

 Java Card™ System
Protection Profile
Closed Configuration

 Version 2.6

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054

August 25th, 2010

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 2/87

Legal Notice

Copyright © 2009 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California
95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the
product that is described in this document. In particular, and without limitation, these
intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications
in the U.S. and in other countries.

U.S. Government Rights - Commercial Software. Government users are subject to the Sun
Microsystems, Inc. standard license agreement and applicable provisions of the FAR and its
supplements.

This distribution may include materials developed by third parties.

Sun, Sun Microsystems, the Sun logo, Java and Java Card are trademarks or registered
trademarks of Sun Microsystems, Inc. or its subsidiaries in the U.S. and other countries.

UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through
X/Open Company, Ltd.

Products covered by and information contained in this service manual are controlled by U.S.
Export Control laws and may be subject to the export or import laws in other countries.
Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users,
whether direct or indirect, are strictly prohibited. Export or reexport to countries subject to
U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited
to, the denied persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED
CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT
THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2009 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California
95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuels relatifs à la technologie
incorporée dans le produit qui est décrit dans ce document. En particulier, et ce sans
limitation, ces droits de propriété intellectuelle peuvent inclure un ou plus des brevets
américains listés à l'adresse http://www.sun.com/patents et un ou les brevets supplémentaires
ou les applications de brevet en attente aux États - Unis et dans les autres pays.

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 3/87

Droits du gouvernement des États-Unis – Logiciel Commercial. Les droits des utilisateurs du
gouvernement des États-Unis sont soumis aux termes de la licence standard Sun
Microsystems et aux conditions appliquées de la FAR et de ces compléments.

Cette distribution peut comprendre des composants développés par des tierces parties.

Sun, Sun Microsystems, le logo Sun, Java et Java Card sont des marques de fabrique ou des
marques déposées enregistrées de Sun Microsystems, Inc. ou ses filiales aux États-Unis et
dans d'autres pays.

UNIX est une marque déposée aux États-Unis et dans d'autres pays et licenciée exlusivement
par X/Open Company, Ltd.

Les produits qui font l'objet de ce manuel d'entretien et les informations qu'il contient sont
regis par la legislation americaine en matière de contrôle des exportations et peuvent être
soumis au droit d'autres pays dans le domaine des exportations et importations. Les
utilisations finales, ou utilisateurs finaux, pour des armes nucleaires, des missiles, des armes
biologiques et chimiques ou du nucleaire maritime, directement ou indirectement, sont
strictement interdites. Les exportations ou reexportations vers des pays sous embargo des
États-Unis, ou vers des entites figurant sur les listes d'exclusion d'exportation americaines, y
compris, mais de maniere non exclusive, la liste de personnes qui font objet d'un ordre de ne
pas participer, d'une façon directe ou indirecte, aux exportations de des produits ou des
services qui sont regi par la legislation americaine sur le contrôle des exportations et la liste
de ressortissants specifiquement designes, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ÉTAT" ET TOUTES AUTRES
CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES SONT
FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI
APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE IMPLICITE
RELATIVE À LA QUALITE MARCHANDE, À L'APTITUDE À UNE UTILISATION
PARTICULIERE OU À L'ABSENCE DE CONTREFAÇON.

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 4/87

This document has been prepared by:

Trusted Labs S.A.S
5, rue du Bailliage
78000 Versailles, France
http://www.trusted-labs.com

 on behalf of Sun Microsystems, Inc.

For any correspondence on this document please contact the following organisations:

• Sun Microsystems, Inc.
 4150 Network Circle

Santa Clara, CA 95054 USA
http://www.sun.com
JC_PP_feedback@sun.com

• Secrétariat Général de la Défense et de la Sécurité Nationale

Agence Nationale de la Sécurité des Systèmes d’Information (ANSSI)
51, boulevard de Latour-Maubourg
75700 Paris 07 SP, France
http://www.ssi.gouv.fr/
communication@ssi.gouv.fr

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 5/87

EXECUTIVE SUMMARY

Java Card™ technology was tailored in order to enable programs written in the Java™
programming language to run on smart cards and other resource–constrained devices.
Due to these constraints, every component of the original Java platform was
significantly reduced. On the other hand, smart cards require specific security features
beyond the scope of the standard Java platform. For instance, even the legitimate
holder of a credit card should not be able to tamper with some of the data contained
on the card (for instance, its credit value). Moreover, just like browsers are to distrust
downloaded applets to protect the local resources, the environment of a Java Card
technology-enabled device must prevent the terminal or even the installed applets,
which may come from various sources, from accessing vendor–specific confidential
data.

A security evaluation, according to a standard such as the Common Criteria scheme, is
an appropriate answer to meet this need for enhanced security. It provides assurance
measures to gauge risks and induced costs, discover weak points prior their
exploitation by hostile agents, and finally grants a level of certification according to
recognized standards of industry for future reference. It also highlights numerous
points that may easily be overlooked although they are extremely relevant to the
security of a Java Card technology-based implementation.

This document presents a set of security requirements for a Java Card technology-
enabled system (“Java Card System”), compliant with Java Card platform specifications
(“Java Card specifications”). These requirements should serve as a template for
writing Common Criteria security targets of specific implementations of Java Card
Systems. It therefore almost solely looks at the Java Card System from the security
angle, a viewpoint that somewhat sets it apart from the usual functional
documentation; that is, focused on what can happen rather than what should happen.
It was written with critical real–life applications in mind. Accordingly, some aspects of
the development and life–cycle of the applications are controlled, even though they are
out of the scope of the software embedded on a Java Card platform.

In order to achieve a better understanding of the security issues of the Java Card
System, this document provides a precise description of its background and possible
environments, which is the first step to risk analysis. The division of duties and
assignment of responsibilities among the several involved actors (both physical and IT
components) leads to the definition of detailed security policies. Of course, there are
cases where the choice is left to implementers; in all cases, risks and assets at stake
are described to pave the way to security targets (ST).

One of the challenges of writing a Protection Profile for the Java Card technology is to
address in a single description the wide range of choices offered (logical
communication channels with the card, remote invocations of services, object deletion,
among others), and the different security architectures that have been conceived so
far (closed platforms, off-card verification of applications code, embedded verifiers,
and so on).

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 6/87

The answer to this challenge is the definition of two main configurations corresponding
to standard use-cases, the Closed Configuration and the Open Configuration [PP
JCSO]. Each configuration is addressed in a dedicated Protection Profile conformant to
Common Criteria version 3.1. They both cover the largest range of features proposed
in the addressed versions of Java Card technology, the difference being in the post-
issuance download feature which is enabled in the Open Configuration but not in the
Closed Configuration.

The Closed and Open Configuration address versions 2.2.x, 3.0 Classic Edition and
3.0.1 Classic Edition of Java Card Platform specifications. The Closed Configuration
addresses Java Card Systems without post-issuance loading and installation of applets;
the Open Configuration addresses Java Card Systems with full capabilities, in particular
post-issuance content management. Both configurations consider off-card bytecode
verification.

The Java Card System - Closed Configuration Protection Profile replaces the Java Card
System – Minimal Configuration Protection Profile, version 1.0b, registered under the
reference PP/0303.

The Java Card System - Open Configuration Protection Profile replaces the Java Card
System – Standard 2.2 Configuration Protection Profile, version 1.0b, registered under
the reference PP/0304.

A dedicated Protection Profile shall address the Java Card Platform version 3
Connected Edition.

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 7/87

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 8/87

Table of Contents
TABLE OF CONTENTS.. 8

1 INTRODUCTION ... 12

1.1 IDENTIFICATION...12

1.2 PROTECTION PROFILE PRESENTATION ..12

1.3 REFERENCES ..14

2 TOE OVERVIEW.. 17

2.1 TOE TYPE ...17

2.1.1 TOE of this PP ...17

2.1.2 TOE of the ST ...17

2.2 TOE SECURITY FEATURES ...18

2.3 NON-TOE HW/SW/FW AVAILABLE TO THE TOE ..21

2.3.1 Bytecode Verification ...21

2.3.2 Loading, Linking and Installation of applets..22

2.3.3 The Card Manager (CM) ..22

2.3.4 Smart Card Platform..22

2.4 TOE LIFE CYCLE ...23

2.5 TOE USAGE...26

3 CONFORMANCE CLAIMS .. 27

3.1 CC CONFORMANCE CLAIMS ...27

3.2 CONFORMANCE CLAIM TO A PACKAGE ..27

3.3 PROTECTION PROFILE CONFORMANCE CLAIMS..27

3.4 CONFORMANCE CLAIMS TO THIS PROTECTION PROFILE ..27

4 SECURITY ASPECTS ... 28

4.1 CONFIDENTIALITY...28

4.2 INTEGRITY ..29

4.3 UNAUTHORIZED EXECUTIONS...29

4.4 BYTECODE VERIFICATION ..30

4.4.1 CAP file Verification..30

4.4.2 Integrity and Authentication ...31

4.4.3 Linking and Verification ...31

4.5 CARD MANAGEMENT ..31

4.6 SERVICES ...32

5 SECURITY PROBLEM DEFINITION ... 34

5.1 ASSETS ..34

5.1.1 User data..34

5.1.2 TSF data...35

5.2 THREATS ..35

5.2.1 CONFIDENTIALITY ..35

5.2.2 INTEGRITY ...36

5.2.3 IDENTITY USURPATION...36

5.2.4 UNAUTHORIZED EXECUTION ...37

5.2.5 DENIAL OF SERVICE..37

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 9/87

5.2.6 Miscellaneous..37

5.3 ORGANISATIONAL SECURITY POLICIES ...38

5.4 ASSUMPTIONS..38

6 SECURITY OBJECTIVES.. 39

6.1 SECURITY OBJECTIVES FOR THE TOE...39

6.1.1 IDENTIFICATION...39

6.1.2 EXECUTION ..39

6.1.3 SERVICES ...40

6.2 SECURITY OBJECTIVES FOR THE OPERATIONAL ENVIRONMENT40

6.3 SECURITY OBJECTIVES RATIONALE ..42

6.3.1 Threats...42

6.3.2 Assumptions ...47

6.3.3 SPD and Security Objectives...47

7 SECURITY FUNCTIONAL REQUIREMENTS.. 51

7.1 SECURITY FUNCTIONAL REQUIREMENTS..51

7.1.1 CoreG_LC Security Functional Requirements ..53

7.2 SECURITY ASSURANCE REQUIREMENTS...69

7.3 SECURITY REQUIREMENTS RATIONALE ...70

7.3.1 Objectives...70

7.3.2 Rationale tables of Security Objectives and SFRs..72

7.3.3 Dependencies..77

7.3.4 Rationale for the Security Assurance Requirements80

7.3.5 ALC_DVS.2 Sufficiency of security measures ..80

7.3.6 AVA_VAN.5 Advanced methodical vulnerability analysis...............................80

APPENDIX 1: GLOSSARY ..81

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 10/87

Figures
Figure 1: Java Card Platform ...13

Figure 2: Java Card System and applet installation environment.......................................19

Figure 3: JCS (TOE) Life Cycle within Product Life Cycle ..24

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 11/87

Tables
Table 1 Threats and Security Objectives - Coverage ...48

Table 2 Security Objectives and Threats - Coverage ...50

Table 3 Assumptions and Security Objectives for the Operational Environment - Coverage 50

Table 4 Security Objectives and SFRs - Coverage ...74

Table 5 SFRs and Security Objectives..76

Table 6 SFRs dependencies ..78

Table 7 SARs dependencies..79

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 12/87

1 INTRODUCTION

This chapter provides the identification of the Protection Profile, presents its general
structure and introduces key notions used in the following chapters.

1.1 IDENTIFICATION

Title: Java Card System - Closed Configuration Protection Profile

Version: 2.6

Publication date: August 25th,, 2010

Certified by: ANSSI, the French Certification Body

Sponsor: Sun Microsystems, Inc.; 4150 Network Circle, Santa Clara, CA 95054 USA.

Editor: Trusted Labs S.A.S - 5, rue du Bailliage, 78000 Versailles, France.

Review Committee: Java Card Forum – Common Criteria Subgroup.

This Protection Profile is conformant to the Common Criteria version 3.1 revision 3.

The minimum assurance level for this Protection Profile is EAL 4 augmented with AVA_VAN.5
“Advanced methodical vulnerability analysis” and ALC_DVS.2 “Sufficiency of security
measures”.

1.2 PROTECTION PROFILE PRESENTATION

This Protection Profile replaces the Java Card Protection Profile Collection – Minimal
Configuration [PP-JCS]. It has been developed by Sun Microsystems with the aim of
providing a full set of up-to-date security requirements: it relies on current Common Criteria
version 3.1 revision 3 and it addresses versions 2.2.x as well as version 3 Classic Edition of
the Java Card Specifications, namely [JCVM22], [JCRE22], [JCAPI22], [JCVM221],
[JCRE221], [JCAPI221], [JCVM222], [JCRE222], [JCAPI222], [JCVM3], [JCAPI3] and [JCRE3].
Those specifications1 cover the Java Card platform virtual machine (“Java Card virtual
machine” or “Java Card VM”), the Java Card platform runtime environment (“Java Card
runtime environment” or “Java Card RE”) and the Java Card Application Programming
Interface (API).

1 In this document, any reference to a specific version of Java Card Platform Specification can be replaced by any
newer version of specification. For instance [JCRE22] can be replaced by [JCRE3] but not the inverse.

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 13/87

This Protection Profile applies to evaluations of closed Java Card Platforms (JCP), that is,
smart cards or similar devices enabled with Java Card technology that does not support post-
issuance downloading of applications, referred to as Java Card technology-based applets
(“Java Card applets” or “applets”). The Java Card technology combines a subset of the Java
programming language with a runtime environment optimized for smart cards and similar
small-memory embedded devices. The main security goal of the Java Card platform is to
counter the unauthorized disclosure or modification of the code and data (keys, PINs,
biometric templates, etc) of applications and platform. In order to achieve this goal, the Java
Card System provides strong security features such as the firewall mechanism, dedicated API
for security services, etc.

Figure 1 shows the typical architecture of a Java Card Platform (JCP), composed of a Smart
Card Platform (SCP), a Java Card System (JCS) and of native code running on top of the
SCP. The SCP is the combination of a Security Integrated Circuit (hereafter the “Security IC”
or simply the “IC”) consisting of processing units, security components, I/O ports and
volatile/non-volatile memories, with a native Operating System (hereafter the “OS”). The
Java Card System implements the Java Card RE, the Java Card VM and the Java Card API
along with the native libraries that supports the Java Card API. The Java Card System
provides a layer between the SCP and the applets space. This layer allows applications
written for one SCP enabled with Java Card technology to run on any other such platform.
The applets space is out of the scope of this Protection Profile.

Native code is usually compiled to the native instruction set of the platform, hence their
name. There are two kinds of native code:

• Native Applications: This is native code, which resides in parallel to the Java Card
System and can be used from outside the card in the same way as a Java Card
applet.

• Native Libraries: This code can be used by the implementation of some Java Card
APIs (e.g. cryptographic libraries) or by native applications. This code cannot be used
from the outside of the card directly.

Application note:

 The “Additional Native Code” block shown in Figure 1 represents all the native code other
than the native application implementing the JCS and the native libraries used by the JCS.

Figure 1: Java Card Platform

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 14/87

This Protection Profile focuses on the security requirements for the JCS and considers the
SCP as the environment of the TOE, thus covered by security objectives. Nevertheless, any
smart card evaluation against2 this PP shall comprehend the IC and all the embedded
software, including the OS, the JCS, as well as the additional native code and the pre-
issuance applets. That is, the TOE of the ST conformant to this PP is as shown in Figure 1.
The aim of introducing all the native code in the scope of the evaluation is to test that the
native code that does not implement any security function cannot be used to circumvent or
jeopardize the JCS TSFs.

This Protection Profile does not require formal compliance to a specific IC Protection Profile
or a smart card OS Protection Profile but those IC and OS evaluated against [PP0035] and
[PP-ESforSSD] respectively, fully meet the objectives.

This Protection Profile requires “demonstrable” conformance.

The PP has been certified by French Scheme ANSSI.

The structure of this document is as follows:

• Chapter 2 presents an overview of the TOE, its security features and its life cycle.
• Chapter 3 defines the conformance claims applicable to this Protection Profile.
• Chapter 4 introduces general Java Card System security concerns, called “security

aspects”.

• Chapter 5 presents the assets of the JCS, the links between users and subjects, the
relevant threats, the organisational security policies, and the assumptions.

• Chapter 6 describes the TOE security objectives, the security objectives for the
operational environment and the security objectives rationale.

• Chapter 7 defines the TOE security functional and assurance requirements, the
security requirements rationales, the dependencies analysis and the rationales for
assurance requirements.

• Appendix 1 contains a glossary of technical terms used in the document.

1.3 REFERENCES

[CC1] Common Criteria for Information Technology Security Evaluation, Part 1:
Introduction and general model. Version 3.1. Revision 3. July 2009.
CCMB-2009-07-001.

[CC2] Common Criteria for Information Technology Security Evaluation, Part 2:
Security functional requirements. Version 3.1. Revision 3. July 2009.
CCMB-2009-07-002.

[CC3] Common Criteria for Information Technology Security Evaluation, Part 3:
Security assurance requirements. Version 3.1. Revision 3. July 2009.
CCMB-2009-07-003.

2 A product evaluation « against » this PP stands for a product evaluation «claiming conformance to » this PP.

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 15/87

[CEM] Common Methodology for Information Technology Security Evaluation,
Evaluation Methodology. Version 3.1. Revision 3. July 2009. CEM-2009-
07-004.

[CSRS] GlobalPlatform Card Security Requirements Specification, Version 1.0,
May 2003.

[GP] GlobalPlatform Card Specification, Version 2.2, March 2006.

[JCVM22] Java Card Platform, version 2.2 Virtual Machine (Java Card VM)
Specification. June 2002. Published by Sun Microsystems, Inc.

[JCAPI22] Java Card Platform, version 2.2 Application Programming Interface. June
2002. Published by Sun Microsystems, Inc.

[JCRE22] Java Card Platform, version 2.2 Runtime Environment (Java Card RE)
Specification. June 2002. Published by Sun Microsystems, Inc.

[JCVM221] Java Card Platform, version 2.2.1 Virtual Machine (Java Card VM)
Specification. October 2003. Published by Sun Microsystems, Inc.

[JCAPI221] Java Card Platform, version 2.2.1 Application Programming Interface.
October 2003. Published by Sun Microsystems, Inc.

[JCRE221] Java Card Platform, version 2.2.1 Runtime Environment (Java Card RE)
Specification. October 2003. Published by Sun Microsystems, Inc.

[JCVM222] Java Card Platform, version 2.2.2 Virtual Machine (Java Card VM)
Specification. Beta release, October 2005. Published by Sun
Microsystems, Inc.

[JCAPI222] Java Card Platform, version 2.2.2 Application Programming Interface,
March 2006. Published by Sun Microsystems, Inc.

[JCRE222] Java Card Platform, version 2.2.2 Runtime Environment (Java Card RE)
Specification. March 2006. Published by Sun Microsystems, Inc.

[JCVM3] Java Card Platform versions 3.0 (March 2008) and 3.0.1 (April 2009),
Classic Edition, Virtual Machine (Java Card VM) Specification. March
2008. Published by Sun Microsystems, Inc.

[JCAPI3] Java Card Platform versions 3.0 (March 2008) and 3.0.1 (April 2009),
Classic Edition, Application Programming Interface, March 2008.
Published by Sun Microsystems, Inc.

[JCRE3] Java Card Platform, versions 3.0 (March 2008) and 3.0.1 (April 2009),
Classic Edition, Runtime Environment (Java Card RE) Specification.
March 2008. Published by Sun Microsystems, Inc.

[JCBV] Java Card Platform, version 2.2 Off-Card Verifier. June 2002. White
paper. Published by Sun Microsystems, Inc.

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 16/87

[JAVASPEC] The Java Language Specification. Third Edition, May 2005. Gosling, Joy,
Steele and Bracha. ISBN 0-321-24678-0.

[JVM] The Java Virtual Machine Specification. Lindholm, Yellin. ISBN 0-201-
43294-3.

[PP-ESforSSD] Embedded Software for Smart Secure Devices Protection Profile, v1.0,
November 27th 2009, ANSSI.

[PP0035] Security IC Platform Protection Profile, Version 1.0, 15 July 2007.

[PP JCS] Java Card Protection Profile Collection, Version 1.0b, August 2003,
registered and certified by the French certification body (ANSSI) under
the following references: [PP/0303] “Minimal Configuration”, [PP/0304]
“Standard 2.1.1 Configuration”, [PP/0305] “Standard 2.2 Configuration”
and [PP/0306] “Defensive Configuration”.

[PP JCSO] Java Card System – Open Configuration Protection Profile, Version 2.6,
April 19th, 2010.

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 17/87

2 TOE OVERVIEW

This chapter defines the Target of Evaluation (TOE) type and describes the main security
features of the TOE, the components of the TOE environment, the TOE life-cycle and TOE
intended usage.

2.1 TOE TYPE

2.1.1 TOE OF THIS PP

The TOE type in this PP is the Java Card System (Java Card RE, Java Card VM and Java Card
API) along with the additional native code embedded in a Smart Card Platform. The Java
Card System is compliant with Java Card specifications versions 2.2.x or 3 Classic Edition,
without post-issuance installation facilities of applications.

This TOE constitutes the target of the security requirements stated in this Protection Profile.
It defines the perimeter of the security requirements stated in this Protection Profile but does
not define the perimeter of an actual evaluated product (TOE of the ST) that must include
the Smart Card Platform.

2.1.2 TOE OF THE ST

The TOE type of the Security Target (ST) that declares conformity to this PP is the Smart
Card Platform (IC and OS) along with the native applications (if any), pre-issuance applets (if
any) and the Java Card System.
Any evaluation of a Smart Secure Device against this PP must include this type of TOE.

Application note:

In case where the TOE of the ST includes additional native code that provides security
features, the writer of the ST that complies with this PP shall add specific security objectives
and security functional requirements for the TOE. He shall then provide full Common Criteria
evidence that the additional native code satisfies all these new requirements. In addition,
since the TOE of the ST includes the Smart Card Platform which belongs to the operational
environment of the TOE of the PP, all the security objectives on the IC and the OS
introduced in this PP shall be redefined as security objectives “on the TOE” in the ST.

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 18/87

2.2 TOE SECURITY FEATURES

The Java Card System Closed Configuration considered in this Protection Profile implements
Java Card Specifications versions 2.2.x or 3 Classic Edition, without post-issuance
downloading of applications.

Figure 2 shows the Java Card System, compliant with Java Card specification versions 2.2.x
or version 3 Classic Edition and the relationship with the environment for applet installation
purposes in two scenarios: one relying on off-card verification (black lines), described
hereafter, the other one relying on on-card verification by the installer (dotted red lines).

The development of the applets is carried on in a Java programming environment. The
compilation of the code produces the corresponding class file. Then, this latter file is
processed by the converter3 which validates the code and generates a converted applet
(CAP) file, the equivalent of a Java class file for the Java Card platform. A CAP file contains
an executable binary representation of the classes of a package. A package is a namespace
within the Java programming language that may contain classes and interfaces, and in the
context of Java Card technology, it defines either a user library, or one or several applets.
Then, the off-card bytecode verifier checks the CAP file (cf. Section 6.3.1 for more details).
After the validation is carried out, the CAP file has to be loaded into the card by means of a
safe loading mechanism.

The loading of a file into the card embodies two main steps: First an authentication step by
which the card issuer and the card recognize each other, for instance by using a type of
cryptographic certification. Once the identification step is accomplished, the CAP file is
transmitted to the card. Due to resource limitations, usually the file is split by the card issuer
into a list of Application Protocol Data Units (APDUs), which are in turn sent to the card.
Once loaded into the card the file is linked, what makes it possible in turn to install, if
defined, instances of any of the applets defined in the file.

3 The converter is defined in the specifications [JCVM221] as the off-card component of the Java Card virtual
machine.

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 19/87

Figure 2: Java Card System and applet installation environment

The linking process consists of a rearrangement of the information contained in the CAP file
in order to speed up the execution of the applications. There is a first step where indirect
external and internal references contained in the file are resolved by replacing those
references with direct ones. This is what is referred to as the resolution step in the [JVM]. In
the next step, called the preparation step in [JVM], the static field image4 and the statically
initialized arrays defined in the file are allocated. Those arrays in turn are also initialized,
thus giving rise to what shall constitute the initial state of the package for the embedded
interpreter.

During the installation process the applet is registered on the card by using an application
identifier (AID). This AID will allow the identification of unique applet instances within the
card. In particular, the AID is used for selecting the applet instance for execution. In some
cases, the actual installation (and registration) of applets is postponed; in the same vein, a
package may contain several applets, and some of them might never be installed.
Installation is then usually separated from the process of loading and linking a CAP file on
the card.

4 The memory area containing the static fields of the file.

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 20/87

The installer is the Java Card System component dealing with loading, linking and installation
of new packages, as described in [JCRE22]. Once selected, it receives the CAP file, stores the
classes of the package on the card, initializes static data, if any, and installs any applets
contained in the package. The installer is also in charge of applet deletion ([JCRE22],
§11.3.4):

- Applet instance deletion, which is the removal of the applet instance and the objects
owned by the applet instance.

- Applet/library package deletion, which entails the removal of all the card resident
components of the CAP file, including code and any associated JCRE management
structures.

- Deletion of an applet package and contained instances, which is the removal of the
card resident code and JCRE structures associated with the applet package, and all
the applet instances in the context of the package.

The installer is out of the scope of the TOE. In this Protection Profile, application loading,
linking and installation are performed pre-issuance in a controlled environment. The TOE
does not provide any content management functionality in the final use operational
environment.

The Java Card VM is the bytecode interpreter as specified in [JCVM22]. The Java Card RE is
responsible for card resource management, communication, applet execution, on-card
system and applet security. The Java Card API provides classes and interfaces to the Java
Card applets. It defines the calling conventions by which an applet may access the Java Card
RE and native services such as, I/O management functions, PIN and cryptographic specific
management and the exceptions mechanism.

While the Java Card VM is responsible for ensuring language-level security, the Java Card RE
provides additional security features for Java Card technology-enabled devices. Applets from
different vendors can coexist in a single card, and they can even share information. An
applet, however, is usually intended to store highly sensitive information, so the sharing of
that information must be carefully limited. In the Java Card platform, applet isolation is
achieved through the applet firewall mechanism ([JCRE22] and [JCRE3] §6.1). That
mechanism confines an applet to its own designated memory area, thus each applet is
prevented from accessing fields and operations of objects owned by other applets, unless a
“shareable interface” is explicitly provided (by the applet who owns it) for allowing access to
that information. The Java Card RE allows sharing using the concept of “shareable interface
objects” (SIO) and static public variables. Java Card VM dynamically enforces the firewall,
that is, at runtime. However applet isolation cannot be entirely granted by the firewall
mechanism if certain integrity conditions are not satisfied by the applications loaded on the
card. Those conditions can be statically verified to hold by a bytecode verifier ([JCRE22],
§6.1.1).

The Java Card VM ensures that the only way for applets to access any resources are either
through the Java Card RE or through the Java Card API (or other vendor-specific APIs). This
objective can only be guaranteed if applets are correctly typed (all the “must clauses”
imposed in chapter 7 of [JCVM22] on the bytecodes and the correctness of the CAP file
format are satisfied).

The Java Card System compliant with Java Card specification versions 2.2.x or 3 Classic
Edition also implements the Java Card System Remote Method Invocation (JCRMI) and

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 21/87

supports logical channels. The JCRMI provides a mechanism for a client application running
on the CAD platform to invoke a method on a remote object on the card. The CAD issues
commands to the card, which in turn dispatches them to the appropriate object. The applet
owner of those objects controls the access to exported objects and the JCRE ensures
coherence and synchronization of the remote object with its on-card representative.
Nevertheless, the JCRMI mechanism is out of the scope of this Protection Profile. This
feature is covered in the Java Card System Open Configuration Protection Profile [PP JCSO].

The Java Card System may optionally provide:

- Object deletion upon request of an applet instance. The JCRE ensures that any
unreferenced object owned by that instance is deleted and the associated space is
recovered for reuse. This feature is out of the scope of this Protection Profile. It is
covered in the Java Card System Open Configuration Protection Profile [PP JCSO].

- Extended memory facilities, introduced in Java Card specification version 2.2.2. This is
an API-based mechanism to access the external memory outside the addressable
Java Card VM space.

Java Card System 2.2.2 also provides support for biometric templates management, external
memory access and contactless I/O interface.

Note that the optional features “Extended memory” and “biometric templates” are not part of
the TOE since they are not included in the Java Card System 2.2.1. Nonetheless, they are
detailed in Appendix 2 of the [PP JCSO] for informative purposes.

Lastly, Java Card System 3 Classic Edition provides support for ETSI defined SWP protocol
for contactless communication, and for independent contacted and contactless interfaces.
Moreover, it provides support for USB connected interface communication.

2.3 NON-TOE HW/SW/FW AVAILABLE TO THE TOE

The following sections further describe the components involved in the environment of the
Java Card System. The role they play will help in understanding the importance of the
assumptions on the environment of the TOE.

2.3.1 BYTECODE VERIFICATION

The bytecode verifier is a program that performs static checks on the bytecodes of the
methods of a CAP file prior to the execution of the file on the card. Bytecode verification is a
key component of security: applet isolation, for instance, depends on the file satisfying the
properties a verifier checks to hold. A method of a CAP file that has been verified shall not
contain, for instance, an instruction that allows forging a memory address or an instruction
that makes improper use of a return address as if it were an object reference. In other
words, bytecodes are verified to hold up to the intended use to which they are defined.
Bytecode verification could be performed totally or partially dynamically. No standard
procedure in that concern has yet been recognized. Furthermore, different approaches have

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 22/87

been proposed for the implementation of bytecode verifiers, most notably data flow analysis,
model checking and lightweight bytecode verification, this latter being an instance of what is
known as proof carrying code. The actual set of checks performed by the verifier is
implementation-dependent, but it is required that it should at least enforce all the “must
clauses” imposed in [JCVM22] on the bytecodes and the correctness of the CAP files’ format.

As for this Protection Profile, the bytecode verifier is an off-card component.

2.3.2 LOADING, LINKING AND INSTALLATION OF APPLETS

The loading, linking and installation of applets in the card occur in a controlled environment
prior issuance of the product. The installer in charge of these operations is out of the scope
of the TOE.

2.3.3 THE CARD MANAGER (CM)

The card manager is an application with specific rights, which is responsible for the
administration of the smart card. This component will in practice be tightly connected with
the Java Card RE. The card manager is in charge of the life cycle of the whole card, as well
as the installed applications (applets). It may have other roles (such as the management of
security domains and enforcement of the card issuer security policies) that we do not detail
here, as they are not in the scope of the TOE and are implementation–dependent.
The card manager’s role is also to manage and control the communication between the card
and the card acceptance device (CAD) or the proximity-coupling device (PCD)5. It is the
controller of the card, but relies on the TOE to manage the runtime of client applets.
A candidate for this component is the Global Platform card manager [GP].

2.3.4 SMART CARD PLATFORM

The SCP is composed of an IC with a Dedicated Software (DS) if any and a native OS. SCP
provides memory management functions, I/O functions that are compliant with ISO
standards, transaction facilities and secure (shielded, native) implementation of
cryptographic functions. The SCP shall be evaluated along with the TOE in a product
evaluation6.

5 The acronym CAD is used here and throughout this specification to refer to both types of card readers - the

conventional Card Acceptance Device (CAD) for contacted I/O interfaces and the Proximity Coupling Device (PCD)
for contactless interfaces.

6 This is true for a product which security target is claiming conformance to this PP.

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 23/87

2.4 TOE LIFE CYCLE

The Java Card System (the TOE) life cycle is part of the product life cycle, i.e. the Java Card
platform with applications, which goes from product development to its usage by the final
user. The product life cycle phases are those detailed in Figure 3. We refer to [PP0035] for a
thorough description of Phases 1 to 7:

• Phases 1 and 2 compose the product development: Embedded Software (IC
Dedicated Software, OS, Java Card System, other platform components such as Card
Manager, Applets) and IC development.

• Phase 3 and Phase 4 correspond to IC manufacturing and packaging, respectively.
Some IC pre-personalisation steps may occur in Phase 3.

• Phase 5 concerns the embedding of software components within the IC.

• Phase 6 is dedicated to the product personalisation prior final use.

• Phase 7 is the product operational phase.

The Java Card System life cycle is composed of four stages:

• Development,

• Storage, pre-personalisation and testing

• Personalisation and testing

• Final usage.

JCS storage is not necessarily a single step in the life cycle since it can be stored in parts.
JCS delivery occurs before storage and may take place more than once if the TOE is
delivered in parts. These stages map to the typical smartcard life cycle phases as shown in
Figure 3.

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 24/87

Figure 3: JCS (TOE) Life Cycle within Product Life Cycle

JCS Development is performed during Phase 1. This includes JCS conception, design,
implementation, testing and documentation. The JCS development shall fulfill requirements
of the final product, including conformance to Java Card Specifications, and
recommendations of the SCP user guidance. The JCS development shall occur in a controlled
environment that avoids disclosure of source code, data and any critical documentation and
that guarantees the integrity of these elements. The evaluation of a product against this PP
shall include the JCS development environment.

The delivery of the JCS may occur either during Security IC Manufacturing (Phase 3) or
during Composite Product Integration (Phase 5). It is also possible that part of the JCS is
delivered in Phase 3 and the rest is delivered in Phase 5. Delivery and acceptance
procedures shall guarantee the authenticity, the confidentiality and integrity of the

Phase 1
Security IC Embedded Software
Development

Phase 2
Security IC Development

Phase 3
Security IC Manufacturing

Phase 4
Security IC packaging

Phase 5
Composite Product Integration

Phase 6
Personalisation

Phase 7
Operational Usage

JCS
Development

JCS Storage,
pre-perso,
testing

JCS
Personalisation

JCS Final usage

JCS Storage,
pre-perso,
testing

JCS
Delivery

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 25/87

exchanged pieces. JCS delivery shall usually involve encrypted signed sending and it
supposes the previous exchange of public keys. The evaluation of a product against7 this PP
shall include the delivery process.

In Phase 3, the Security IC Manufacturer may store, pre-personalize the JCS and potentially
conduct tests on behalf of the JCS developer. The Security IC Manufacturing environment
shall protect the integrity and confidentiality of the JCS and of any related material, for
instance test suites. The evaluation of a product against this PP shall include the whole
Security IC Manufacturing environment, in particular those locations where the JCS is
accessible for installation or testing. If the Security IC has already been certified (e.g. against
[PP0035]) there is no need to perform the evaluation again.

In Phase 5, the Composite Product Integrator may store, pre-personalize the JCS and
potentially conduct tests on behalf of the JCS developer. The Composite Product Integration
environment shall protect the integrity and confidentiality of the JCS and of any related
material, for instance test suites. Note that (part of) JCS storage in Phase 5 implies a product
delivery after Phase 5. Hence, the evaluation of such product against this PP shall include the
Composite Product Integrator environment (may be more than one if there are many
integrators). At the end of this stage, all the applets of the final product have been installed
on top of the JCS.

The JCS (and potentially the applets) is personalized in Phase 6, if necessary. The
Personalization environment shall be included in a product evaluation only if the product
delivery point is at the end of Phase 6. This means that some of the product personalization
operations may require a controlled environment (secure locations, secure procedures and
trusted personnel). The product shall be tested again and all critical material including
personalization data, test suites and documentation shall be protected from disclosure and
modification.

The JCS final usage environment is that of the product where the JCS is embedded in. It
covers a wide spectrum of situations that cannot be covered by evaluations. The JCS and the
product shall provide the full set of security functionalities to avoid abuse of the product by
untrusted entities.

Application note:

The Security Target writer shall specify the life cycle of the product, the JCS delivery point
and the product delivery point. The product delivery point may arise at the end of Phase 3,
4, 5 or 6 depending on the product itself. Note that JCS delivery precedes product delivery.
During product evaluation against this Protection Profile, the ALC security assurance
requirements apply to the whole product life cycle up to delivery.

7 A product evaluation « against » this PP stands for a product evaluation « claiming conformance to” this PP.

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 26/87

2.5 TOE USAGE

Smart cards are used as data carriers that are secure against forgery and tampering as well
as personal, highly reliable, small size devices capable of replacing paper transactions by
electronic data processing. Data processing is performed by a piece of software embedded in
the smart card chip, called an application.

The Java Card System is intended to transform a smart card into a platform capable of
executing applications written in a subset of the Java programming language. The intended
use of a Java Card platform is to provide a framework for implementing IC independent
applications conceived to safely coexist and interact with other applications into a single
smart card.

Applications installed on a Java Card platform can be selected for execution when the card
communicates with a card reader.

Notice that these applications may contain other confidentiality (or integrity) sensitive data
than usual cryptographic keys and PINs; for instance, passwords or pass-phrases are as
confidential as the PIN, or the balance of an electronic purse.

So far, the most typical applications are:

– Financial applications, like Credit/Debit ones, stored value purse, or
electronic commerce, among others.

– Transport and ticketing, granting pre-paid access to a transport system like
the metro and bus lines of a city.

– Telephony, through the subscriber identification module (SIM) or the NFC
chip for mobile phones.

– Personal identification, for granting access to secured sites or providing
identification credentials to participants of an event.

– Electronic passports and identity cards.
– Secure information storage, like health records, or health insurance cards.
– Loyalty programs, like the “Frequent Flyer” points awarded by airlines.

Points are added and deleted from the card memory in accordance with
program rules. The total value of these points may be quite high and they
must be protected against improper alteration in the same way that
currency value is protected.

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 27/87

3 CONFORMANCE CLAIMS

3.1 CC CONFORMANCE CLAIMS

This Protection Profile is CC Part 2 [CC2] and CC Part 3 [CC3] conformant of Common
Criteria version 3.1, revision 3.

3.2 CONFORMANCE CLAIM TO A PACKAGE

The minimum assurance level for the evaluation of a Java Card Platform with a TOE
conformant to this PP is EAL4 augmented with AVA_VAN.5 “Advanced methodical
vulnerability analysis” and ALC_DVS.2 “Sufficiency of security measures”.

3.3 PROTECTION PROFILE CONFORMANCE CLAIMS

This Protection Profile does not claim conformance to any other Protection Profile.

3.4 CONFORMANCE CLAIMS TO THIS PROTECTION PROFILE

The conformance to this PP, required for the Security Targets and Protection Profiles
claiming conformance to it, is demonstrable, as defined in CC Part 1 [CC1].

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 28/87

4 SECURITY ASPECTS

This chapter describes the main security issues of the Java Card System and its environment
addressed in this Protection Profile, called “security aspects”, in a CC-independent way. In
addition to this, they also give a semi-formal framework to express the CC security
environment and objectives of the TOE. They can be instantiated as assumptions, threats,
objectives (for the TOE and the environment) or organizational security policies. For
instance, we will define hereafter the following aspect:

#.OPERATE (1) The TOE must ensure continued correct operation of its security functions. (2)

The TOE must also return to a well-defined valid state before a service request in case of failure
during its operation.

TSFs must be continuously active in one way or another; this is called “OPERATE”. The
Protection Profile may include an assumption, called “A.OPERATE”, stating that it is assumed
that the TOE ensures continued correct operation of its security functions, and so on.
However, it may also include a threat, called “T.OPERATE”, to be interpreted as the negation
of the statement #.OPERATE. In this example, this amounts to stating that an attacker may
try to circumvent some specific TSF by temporarily shutting it down. The use of “OPERATE”
is intended to ease the understanding of this document.

This section presents security aspects that will be used in the remainder of this document.
Some being quite general, we give further details, which are numbered for easier cross-
reference within the document. For instance, the two parts of #.OPERATE, when instantiated
with an objective “O.OPERATE”, may be met by separate SFRs in the rationale. The
numbering then adds further details on the relationship between the objective and those
SFRs.

4.1 CONFIDENTIALITY

#.CONFID-APPLI-DATA Application data must be protected against unauthorized disclosure.
This concerns logical attacks at runtime in order to gain read access
to other application’s data.

#.CONFID-JCS-CODE Java Card System code must be protected against unauthorized
disclosure. Knowledge of the Java Card System code may allow
bypassing the TSF. This concerns logical attacks at runtime in order
to gain a read access to executable code, typically by executing an
application that tries to read the memory area where a piece of
Java Card System code is stored.

#.CONFID-JCS-DATA Java Card System data must be protected against unauthorized
disclosure. This concerns logical attacks at runtime in order to gain
a read access to Java Card System data. Java Card System data
includes the data managed by the Java Card RE, the Java Card VM
and the internal data of Java Card platform API classes as well.

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 29/87

4.2 INTEGRITY

#.INTEG-APPLI-CODE Application code must be protected against unauthorized
modification. This concerns logical attacks at runtime in order to
gain write access to the memory zone where executable code is
stored.

#.INTEG-APPLI-DATA Application data must be protected against unauthorized
modification. This concerns logical attacks at runtime in order to
gain unauthorized write access to application data.

#.INTEG-JCS-CODE Java Card System code must be protected against unauthorized
modification. This concerns logical attacks at runtime in order to
gain write access to executable code.

#.INTEG-JCS-DATA Java Card System data must be protected against unauthorized
modification. This concerns logical attacks at runtime in order to
gain write access to Java Card System data. Java Card System data
includes the data managed by the Java Card RE, the Java Card VM
and the internal data of Java Card API classes as well.

4.3 UNAUTHORIZED EXECUTIONS

#.EXE-APPLI-CODE Application (byte)code must be protected against unauthorized
execution. This concerns (1) invoking a method outside the scope of
the accessibility rules provided by the access modifiers of the Java
programming language ([JAVASPEC] §6.6); (2) jumping inside a
method fragment or interpreting the contents of a data memory
area as if it was executable code; (3) unauthorized execution of a
remote method from the CAD.

#.EXE-JCS-CODE Java Card System bytecode must be protected against unauthorized
execution. Java Card System bytecode includes any code of the
Java Card RE or API. This concerns (1) invoking a method outside
the scope of the accessibility rules provided by the access modifiers
of the Java programming language ([JAVASPEC] §6.6); (2) jumping
inside a method fragment or interpreting the contents of a data
memory area as if it was executable code. Note that execute access
to native code of the Java Card System and applications is the
concern of #.NATIVE.

#.FIREWALL The Firewall shall ensure controlled sharing of class instances8, and
isolation of their data and code between packages (that is,
controlled execution contexts) as well as between packages and the

8 This concerns in particular the arrays, which are considered as instances of the Object class in the Java

programming language.

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 30/87

JCRE context. An applet shall not read, write or compare a piece of
data belonging to an applet that is not in the same context, or
execute one of the methods of an applet in another context without
its authorization.

#.NATIVE Because the execution of native code is outside of the JCS TSF
scope, it must be secured so as to not provide ways to bypass the
TSFs of the JCS. Loading of native code, which is as well outside
those TSFs, is submitted to the same requirements. Should native
software be privileged in this respect, exceptions to the policies
must include a rationale for the new security framework they
introduce.

4.4 BYTECODE VERIFICATION

#.VERIFICATION Bytecode must be verified prior to being executed. Bytecode
verification includes (1) how well-formed CAP file is and the
verification of the typing constraints on the bytecode, (2) binary
compatibility with installed CAP files and the assurance that the
export files used to check the CAP file correspond to those that will
be present on the card when loading occurs.

4.4.1 CAP FILE VERIFICATION

Bytecode verification includes checking at least the following properties: (3) bytecode
instructions represent a legal set of instructions used on the Java Card platform; (4)
adequacy of bytecode operands to bytecode semantics; (5) absence of operand stack
overflow/underflow; (6) control flow confinement to the current method (that is, no control
jumps to outside the method); (7) absence of illegal data conversion and reference forging;
(8) enforcement of the private/public access modifiers for class and class members; (9)
validity of any kind of reference used in the bytecodes (that is, any pointer to a bytecode,
class, method, object, local variable, etc actually points to the beginning of piece of data of
the expected kind); (10) enforcement of rules for binary compatibility (full details are given
in [JCVM22], [JVM], [JCBV]). The actual set of checks performed by the verifier is
implementation-dependent, but shall at least enforce all the “must clauses” imposed in
[JCVM22] on the bytecodes and the correctness of the CAP files’ format.

As most of the actual Java Card VMs do not perform all the required checks at runtime,
mainly because smart cards lack memory and CPU resources, CAP file verification prior to
execution is mandatory. On the other hand, there is no requirement on the precise moment
when the verification shall actually take place, as far as it can be ensured that the verified
file is not modified thereafter. Therefore, the bytecodes can be verified either before the
loading of the file on to the card or before the installation of the file in the card or before the
execution, depending on the card capabilities, in order to ensure that each bytecode is valid
at execution time. This Protection Profile assumes bytecode verification is performed off-
card.

Another important aspect to be considered about bytecode verification and application
downloading is, first, the assurance that every package required by the loaded applet is

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 31/87

indeed on the card, in a binary-compatible version (binary compatibility is explained in
[JCVM22] §4.4), second, that the export files used to check and link the loaded applet have
the corresponding correct counterpart on the card.

4.4.2 INTEGRITY AND AUTHENTICATION

Verification off-card is useless if the application package is modified afterwards. The usage of
cryptographic certifications coupled with the verifier in a secure module is a simple means to
prevent any attempt of modification between package verification and package installation.
Once a verification authority has verified the package, it signs it and sends it to the card.
Prior to the installation of the package, the card verifies the signature of the package, which
authenticates the fact that it has been successfully verified. In addition to this, a secured
communication channel is used to communicate it to the card, ensuring that no modification
has been performed on it.

Alternatively, the card itself may include a verifier and perform the checks prior to the
effective installation of the applet or provide means for the bytecodes to be verified
dynamically. On-card bytecode verifier is out of the scope of this Protection Profile.

4.4.3 LINKING AND VERIFICATION

Beyond functional issues, the installer ensures at least a property that matters for security:
the loading order shall guarantee that each newly loaded package references only packages
that have been already loaded on the card. The linker can ensure this property because the
Java Card platform does not support dynamic downloading of classes.

4.5 CARD MANAGEMENT

#.CARD-MANAGEMENT The card manager shall implement the card issuer’s policy on the
card.

#.INSTALL (1) The TOE must be able to return to a safe and consistent state
when the installation of a package or an applet fails or be cancelled
(whatever the reasons). (2) Installing an applet must have no effect
on the code and data of already installed applets. The installation
procedure should not be used to bypass the TSFs. In short, it is an
atomic operation, free of harmful effects on the state of the other
applets. (3) The procedure of loading and installing a package shall
ensure its integrity and authenticity.

#.SID (1) Users and subjects of the TOE must be identified. (2) The
identity of sensitive users and subjects associated with
administrative and privileged roles must be particularly protected;
this concerns the Java Card RE, the applets registered on the card,
and especially the default applet and the currently selected applet
(and all other active applets in Java Card System 2.2.x). A change
of identity, especially standing for an administrative role (like an

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 32/87

applet impersonating the Java Card RE), is a severe violation of the
Security Functional Requirements (SFR). Selection controls the
access to any data exchange between the TOE and the CAD and
therefore, must be protected as well. Any exchange of data through
the APDU buffer (which can be accessed by any applet) can lead to
disclosure of keys, application code or data, and so on.

4.6 SERVICES

#.ALARM The TOE shall provide appropriate feedback upon detection of a
potential security violation. This particularly concerns the type errors
detected by the bytecode verifier, the security exceptions thrown by
the Java Card VM, or any other security-related event occurring
during the execution of a TSF.

#.OPERATE (1) The TOE must ensure continued correct operation of its security
functions. (2) In case of failure during its operation, the TOE must
also return to a well-defined valid state before the next service
request.

#.RESOURCES The TOE controls the availability of resources for the applications
and enforces quotas and limitations in order to prevent
unauthorized denial of service or malfunction of the TSFs. This
concerns both execution (dynamic memory allocation) and
installation (static memory allocation) of applications and packages.

#.CIPHER The TOE shall provide a means to the applications for ciphering
sensitive data, for instance, through a programming interface to
low-level, highly secure cryptographic services. In particular, those
services must support cryptographic algorithms consistent with
cryptographic usage policies and standards.

#.KEY-MNGT The TOE shall provide a means to securely manage cryptographic
keys. This includes: (1) Keys shall be generated in accordance with
specified cryptographic key generation algorithms and specified
cryptographic key sizes, (2) Keys must be distributed in accordance
with specified cryptographic key distribution methods, (3) Keys
must be initialized before being used, (4) Keys shall be destroyed in
accordance with specified cryptographic key destruction methods.

#.PIN-MNGT The TOE shall provide a means to securely manage PIN objects.
This includes: (1) Atomic update of PIN value and try counter,
(2) No rollback on the PIN-checking function, (3) Keeping the PIN
value (once initialized) secret (for instance, no clear-PIN-reading
function), (4) Enhanced protection of PIN’s security attributes
(state, try counter…) in confidentiality and integrity.

#.SCP The smart card platform must be secure with respect to the SFRs.
Then: (1) After a power loss, RF signal loss or sudden card removal
prior to completion of some communication protocol, the SCP will

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 33/87

allow the TOE on the next power up to either complete the
interrupted operation or revert to a secure state. (2) It does not
allow the SFRs to be bypassed or altered and does not allow access
to other low-level functions than those made available by the
packages of the Java Card API. That includes the protection of its
private data and code (against disclosure or modification) from the
Java Card System. (3) It provides secure low-level cryptographic
processing to the Java Card System. (4) It supports the needs for
any update to a single persistent object or class field to be atomic,
and possibly a low-level transaction mechanism. (5) It allows the
Java Card System to store data in “persistent technology memory”
or in volatile memory, depending on its needs (for instance,
transient objects must not be stored in non-volatile memory). The
memory model is structured and allows for low–level control
accesses (segmentation fault detection). (6) It safely transmits low–
level exceptions to the TOE (arithmetic exceptions, checksum
errors), when applicable. Finally, it is required that (7) the IC is
designed in accordance with a well-defined set of policies and
standards (for instance, those specified in [PP0035]), and will be
tamper resistant to actually prevent an attacker from extracting or
altering security data (like cryptographic keys) by using commonly
employed techniques (physical probing and sophisticated analysis of
the chip). This especially matters to the management (storage and
operation) of cryptographic keys.

#.TRANSACTION The TOE must provide a means to execute a set of operations
atomically. This mechanism must not jeopardise the execution of
the user applications. The transaction status at the beginning of an
applet session must be closed (no pending updates).

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 34/87

5 SECURITY PROBLEM DEFINITION

5.1 ASSETS

This chapter introduces the assets to be protected, the users of the TOE and their software
counterparts.

Assets are security-relevant elements to be directly protected by the TOE. Confidentiality of
assets is always intended with respect to un-trusted people or software, as various parties
are involved during the first stages of the smart card product life-cycle; details are given in
threats hereafter.

Assets may overlap, in the sense that distinct assets may refer (partially or wholly) to the
same piece of information or data. For example, a piece of software may be either a piece of
source code (one asset) or a piece of compiled code (another asset), and may exist in
various formats at different stages of its development (digital supports, printed paper). This
separation is motivated by the fact that a threat may concern one form at one stage, but be
meaningless for another form at another stage.

The assets to be protected by the TOE are listed below. They are grouped according to
whether it is data created by and for the user (User data) or data created by and for the TOE
(TSF data). For each asset it is specified the kind of dangers that weigh on it.

5.1.1 USER DATA

D.APP_CODE

The code of the applets and libraries loaded on the card.

To be protected from unauthorized modification.

D.APP_C_DATA

Confidential sensitive data of the applications, like the data contained in an object, a static
field of a package, a local variable of the currently executed method, or a position of the
operand stack.

To be protected from unauthorized disclosure.

D.APP_I_DATA

Integrity sensitive data of the applications, like the data contained in an object, a static
field of a package, a local variable of the currently executed method, or a position of the
operand stack.

To be protected from unauthorized modification.

D.APP_KEYs

Cryptographic keys owned by the applets.

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 35/87

To be protected from unauthorized disclosure and modification.

D.PIN

Any end-user's PIN.

To be protected from unauthorized disclosure and modification.

5.1.2 TSF DATA

D.API_DATA

Private data of the API, like the contents of its private fields.

To be protected from unauthorized disclosure and modification.

D.CRYPTO

Cryptographic data used in runtime cryptographic computations, like a seed used to
generate a key.

To be protected from unauthorized disclosure and modification.

D.JCS_CODE

The code of the Java Card System.

To be protected from unauthorized disclosure and modification.

D.JCS_DATA

The internal runtime data areas necessary for the execution of the Java Card VM, such as,
for instance, the frame stack, the program counter, the class of an object, the length
allocated for an array, any pointer used to chain data-structures.

To be protected from unauthorized disclosure or modification.

D.SEC_DATA

The runtime security data of the Java Card RE, like, for instance, the AIDs used to identify
the installed applets, the currently selected applet, the current context of execution and
the owner of each object.

To be protected from unauthorized disclosure and modification.

5.2 THREATS

This section introduces the threats to the assets against which specific protection within the
TOE or its environment is required. Several groups of threats are distinguished according to
the configuration chosen for the TOE and the means used in the attack. The classification is
also inspired by the components of the TOE that are supposed to counter each threat.

5.2.1 CONFIDENTIALITY

T.CONFID-APPLI-DATA

The attacker executes an application to disclose data belonging to another application.
See #.CONFID-APPLI-DATA for details.

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 36/87

Directly threatened asset(s): D.APP_C_DATA, D.PIN and D.APP_KEYs.

T.CONFID-JCS-CODE

The attacker executes an application to disclose the Java Card System code. See
#.CONFID-JCS-CODE for details.

Directly threatened asset(s): D.JCS_CODE.

T.CONFID-JCS-DATA

The attacker executes an application to disclose data belonging to the Java Card System.
See #.CONFID-JCS-DATA for details.

Directly threatened asset(s): D.API_DATA, D.SEC_DATA, D.JCS_DATA and D.CRYPTO.

5.2.2 INTEGRITY

T.INTEG-APPLI-CODE

The attacker executes an application to alter (part of) its own code or another
application's code. See #.INTEG-APPLI-CODE for details.

Directly threatened asset(s): D.APP_CODE

T.INTEG-APPLI-DATA

The attacker executes an application to alter (part of) another application's data. See
#.INTEG-APPLI-DATA for details.

Directly threatened asset(s): D.APP_I_DATA, D.PIN and D.APP_KEYs.

T.INTEG-JCS-CODE

The attacker executes an application to alter (part of) the Java Card System code. See
#.INTEG-JCS-CODE for details.

Directly threatened asset(s): D.JCS_CODE.

T.INTEG-JCS-DATA

The attacker executes an application to alter (part of) Java Card System or API data. See
#.INTEG-JCS-DATA for details.

Directly threatened asset(s): D.API_DATA, D.SEC_DATA, D.JCS_DATA and D.CRYPTO.

Other attacks are in general related to one of the above, and aimed at disclosing or
modifying on-card information. Nevertheless, they vary greatly on the employed means and
threatened assets, and are thus covered by quite different objectives in the sequel. That is
why a more detailed list is given hereafter.

5.2.3 IDENTITY USURPATION

T.SID.1

An applet impersonates another application, or even the Java Card RE, in order to gain
illegal access to some resources of the card or with respect to the end user or the
terminal. See #.SID for details.

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 37/87

Directly threatened asset(s): D.SEC_DATA (other assets may be jeopardized should this
attack succeed, for instance, if the identity of the JCRE is usurped), D.PIN and
D.APP_KEYs.

T.SID.2

The attacker modifies the TOE's attribution of a privileged role (e.g. default applet and
currently selected applet), which allows illegal impersonation of this role. See #.SID for
further details.

Directly threatened asset(s): D.SEC_DATA (any other asset may be jeopardized should
this attack succeed, depending on whose identity was forged).

5.2.4 UNAUTHORIZED EXECUTION

T.EXE-CODE.1

An applet performs an unauthorized execution of a method. See #.EXE-JCS-CODE and
#.EXE-APPLI-CODE for details.

Directly threatened asset(s): D.APP_CODE.

T.EXE-CODE.2

An applet performs an execution of a method fragment or arbitrary data. See #.EXE-JCS-
CODE and #.EXE-APPLI-CODE for details.

Directly threatened asset(s): D.APP_CODE.

T.NATIVE

An applet executes a native method to bypass a TOE Security Function such as the
firewall. See #.NATIVE for details.

Directly threatened asset(s): D.JCS_DATA.

5.2.5 DENIAL OF SERVICE

T.RESOURCES

An attacker prevents correct operation of the Java Card System through consumption of
some resources of the card: RAM or NVRAM. See #.RESOURCES for details.

Directly threatened asset(s): D.JCS_DATA.

5.2.6 MISCELLANEOUS

T.PHYSICAL

The attacker discloses or modifies the design of the TOE, its sensitive data or application
code by physical (opposed to logical) tampering means. This threat includes IC failure
analysis, electrical probing, unexpected tearing, and DPA. That also includes the
modification of the runtime execution of Java Card System or SCP software through
alteration of the intended execution order of (set of) instructions through physical
tampering techniques.

This threatens all the identified assets.

This threat refers to the point (7) of the security aspect #.SCP, and all aspects related to
confidentiality and integrity of code and data.

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 38/87

5.3 ORGANISATIONAL SECURITY POLICIES

No organizational security policies are required.

5.4 ASSUMPTIONS

This section introduces the assumptions made on the environment of the TOE.

A.NO-DELETION

No deletion of installed applets (or packages) is possible.

A.NO-INSTALL

There is no post-issuance installation of applets. Installation of applets is secure and
occurs only in a controlled environment in the pre-issuance phase. See #.INSTALL for
details.

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 39/87

6 SECURITY OBJECTIVES

6.1 SECURITY OBJECTIVES FOR THE TOE

This section defines the security objectives to be achieved by the TOE.

6.1.1 IDENTIFICATION

O.SID

The TOE shall uniquely identify every subject (applet, or package) before granting it
access to any service.

6.1.2 EXECUTION

O.FIREWALL

The TOE shall ensure controlled sharing of data containers owned by applets of different
packages, or the JCRE and between applets and the TSFs. See #.FIREWALL for details.

O.GLOBAL_ARRAYS_CONFID

The TOE shall ensure that the APDU buffer that is shared by all applications is always
cleaned upon applet selection.

The TOE shall ensure that the global byte array used for the invocation of the install
method of the selected applet is always cleaned after the return from the install method.

O.GLOBAL_ARRAYS_INTEG

The TOE shall ensure that only the currently selected application may have a write access
to the APDU buffer and the global byte array used for the invocation of the install method
of the selected applet.

O.NATIVE

The only means that the Java Card VM shall provide for an application to execute native
code is the invocation of a method of the Java Card API, or any additional API. See
#.NATIVE for details.

O.OPERATE

The TOE must ensure continued correct operation of its security functions. See
#.OPERATE for details.

O.RESOURCES

The TOE shall control the availability of resources for the applications. See #.RESOURCES
for details.

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 40/87

O.REALLOCATION

The TOE shall ensure that the re-allocation of a memory block for the runtime areas of
the Java Card VM does not disclose any information that was previously stored in that
block.

6.1.3 SERVICES

O.ALARM

The TOE shall provide appropriate feedback information upon detection of a potential
security violation. See #.ALARM for details.

O.CIPHER

The TOE shall provide a means to cipher sensitive data for applications in a secure way.
In particular, the TOE must support cryptographic algorithms consistent with
cryptographic usage policies and standards. See #.CIPHER for details.

O.KEY-MNGT

The TOE shall provide a means to securely manage cryptographic keys. This concerns the
correct generation, distribution, access and destruction of cryptographic keys. See #.KEY-
MNGT.

O.PIN-MNGT

The TOE shall provide a means to securely manage PIN objects. See #.PIN-MNGT for
details.

Application note:

PIN objects may play key roles in the security architecture of client applications. The way
they are stored and managed in the memory of the smart card must be carefully
considered, and this applies to the whole object rather than the sole value of the PIN. For
instance, the try counter's value is as sensitive as that of the PIN.

O.TRANSACTION

The TOE must provide a means to execute a set of operations atomically. See
#.TRANSACTION for details.

O.KEY-MNGT, O.PIN-MNGT, O.TRANSACTION and O.CIPHER are actually provided to applets
in the form of Java Card APIs. Vendor-specific libraries can also be present on the card and
made available to applets; those may be built on top of the Java Card API or independently.
These proprietary libraries will be evaluated together with the TOE.

6.2 SECURITY OBJECTIVES FOR THE OPERATIONAL

ENVIRONMENT

This section introduces the security objectives to be achieved by the environment.

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 41/87

OE.CARD-MANAGEMENT

The card manager shall control the access to card management functions such as the
installation, update or deletion of applets. It shall also implement the card issuer's policy
on the card.

The card manager is an application with specific rights, which is responsible for the
administration of the smart card. This component will in practice be tightly connected with
the TOE, which in turn shall very likely rely on the card manager for the effective
enforcing of some of its security functions. Typically the card manager shall be in charge
of the life cycle of the whole card, as well as that of the installed applications (applets).
The card manager should prevent that card content management (loading, installation,
deletion) is carried out, for instance, at invalid states of the card or by non-authorized
actors. It shall also enforce security policies established by the card issuer.

OE.NO-DELETION

No installed applets (or packages) shall be deleted from the card.

OE.NO-INSTALL

There is no post-issuance installation of applets. Installation of applets is secure and shall
occur only in a controlled environment in the pre-issuance phase.

OE.SCP.IC

The SCP shall provide all IC security features against physical attacks.

This security objective for the environment refers to the point (7) of the security aspect
#.SCP:

o It is required that the IC is designed in accordance with a well-defined set of policies
and standards (likely specified in another protection profile), and will be tamper resistant
to actually prevent an attacker from extracting or altering security data (like cryptographic
keys) by using commonly employed techniques (physical probing and sophisticated
analysis of the chip). This especially matters to the management (storage and operation)
of cryptographic keys.

OE.SCP.RECOVERY

If there is a loss of power, or if the smart card is withdrawn from the CAD while an
operation is in progress, the SCP must allow the TOE to eventually complete the
interrupted operation successfully, or recover to a consistent and secure state.

This security objective for the environment refers to the security aspect #.SCP.1: The
smart card platform must be secure with respect to the SFRs. Then after a power loss or
sudden card removal prior to completion of some communication protocol, the SCP will
allow the TOE on the next power up to either complete the interrupted operation or revert
to a secure state.

OE.SCP.SUPPORT

The SCP shall support the TSFs of the TOE.

This security objective for the environment refers to the security aspects 2,3,4 and 5 of
#.SCP:

(2) It does not allow the TSFs to be bypassed or altered and does not allow access to
other low-level functions than those made available by the packages of the API. That

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 42/87

includes the protection of its private data and code (against disclosure or modification)
from the Java Card System.

(3) It provides secure low-level cryptographic processing to the Java Card System.

(4) It supports the needs for any update to a single persistent object or class field to be
atomic, and possibly a low-level transaction mechanism.

(5) It allows the Java Card System to store data in "persistent technology memory" or in
volatile memory, depending on its needs (for instance, transient objects must not be
stored in non-volatile memory). The memory model is structured and allows for low-level
control accesses (segmentation fault detection).

OE.VERIFICATION

All the bytecodes shall be verified at least once, before the loading, before the installation
or before the execution, depending on the card capabilities, in order to ensure that each
bytecode is valid at execution time. See #.VERIFICATION for details.

The objectives OE.NO-INSTALL and OE.NO-DELETION have been included so as to describe
procedures that shall contribute to ensure that the TOE will be used in a secure manner.
Moreover, they have been defined in accordance with the environmental assumptions they
uphold (actually, they are just a reformulation of the corresponding assumptions). The NO-
DELETION and NO-INSTALL (assumptions and objectives) constitute the explicit statement
that the Closed configuration corresponds to that of a closed card (no code can be loaded or
deleted once the card has been issued).

6.3 SECURITY OBJECTIVES RATIONALE

6.3.1 THREATS

6.3.1.1 CONFIDENTIALITY

T.CONFID-APPLI-DATA This threat is countered by the security objective for the
operational environment regarding bytecode verification (OE.VERIFICATION). It is also
covered by the isolation commitments stated in the (O.FIREWALL) objective. It relies in its
turn on the correct identification of applets stated in (O.SID). Moreover, as the firewall is
dynamically enforced, it shall never stop operating, as stated in the (O.OPERATE)
objective.

As the firewall is a software tool automating critical controls, the objective O.ALARM asks
for it to provide clear warning and error messages, so that the appropriate counter-
measure can be taken.

The objectives OE.CARD-MANAGEMENT and OE.VERIFICATION contribute to cover this
threat by controlling the access to card management functions and by checking the
bytecode, respectively.

The objectives OE.SCP.RECOVERY and OE.SCP.SUPPORT are intended to support the
O.OPERATE and O.ALARM objectives of the TOE, so they are indirectly related to the
threats that these latter objectives contribute to counter.

As applets may need to share some data or communicate with the CAD, cryptographic
functions are required to actually protect the exchanged information (O.CIPHER). Remark
that even if the TOE shall provide access to the appropriate TSFs, it is still the

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 43/87

responsibility of the applets to use them. Keys and PIN's are particular cases of an
application's sensitive data (the Java Card System may possess keys as well) that ask for
appropriate management (O.KEY-MNGT, O.PIN-MNGT, O.TRANSACTION). If the PIN class
of the Java Card API is used, the objective (O.FIREWALL) shall contribute in covering this
threat by controlling the sharing of the global PIN between the applets.

Other application data that is sent to the applet as clear text arrives to the APDU buffer,
which is a resource shared by all applications. The disclosure of such data is prevented by
the (O.GLOBAL_ARRAYS_CONFID) security objective.

Finally, any attempt to read a piece of information that was previously used by an
application but has been logically deleted is countered by the O.REALLOCATION objective.
That objective states that any information that was formerly stored in a memory block
shall be cleared before the block is reused.

T.CONFID-JCS-CODE This threat is countered by the list of properties described in the
(#.VERIFICATION) security aspect. Bytecode verification ensures that each of the
instructions used on the Java Card platform is used for its intended purpose and in the
intended scope of accessibility. As none of those instructions enables reading a piece of
code, no Java Card applet can therefore be executed to disclose a piece of code. Native
applications are also harmless because of the objective (O.NATIVE), so no application can
be run to disclose a piece of code.

The (#.VERIFICATION) security aspect is addressed in this configuration by the objective
for the environment OE.VERIFICATION.

The objectives OE.CARD-MANAGEMENT and OE.VERIFICATION contribute to cover this
threat by controlling the access to card management functions and by checking the
bytecode, respectively.

T.CONFID-JCS-DATA This threat is covered by bytecode verification (OE.VERIFICATION)
and the isolation commitments stated in the (O.FIREWALL) security objective. This latter
objective also relies in its turn on the correct identification of applets stated in (O.SID).
Moreover, as the firewall is dynamically enforced, it shall never stop operating, as stated
in the (O.OPERATE) objective.

As the firewall is a software tool automating critical controls, the objective O.ALARM asks
for it to provide clear warning and error messages, so that the appropriate counter-
measure can be taken.

The objectives OE.CARD-MANAGEMENT and OE.VERIFICATION contribute to cover this
threat by controlling the access to card management functions and by checking the
bytecode, respectively.

The objectives OE.SCP.RECOVERY and OE.SCP.SUPPORT are intended to support the
O.OPERATE and O.ALARM objectives of the TOE, so they are indirectly related to the
threats that these latter objectives contribute to counter.

6.3.1.2 INTEGRITY

T.INTEG-APPLI-CODE This threat is countered by the list of properties described in the
(#.VERIFICATION) security aspect. Bytecode verification ensures that each of the
instructions used on the Java Card platform is used for its intended purpose and in the
intended scope of accessibility. As none of these instructions enables modifying a piece of
code, no Java Card applet can therefore be executed to modify a piece of code. Native

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 44/87

applications are also harmless because of the objective (O.NATIVE), so no application can
be run to modify a piece of code.

The (#.VERIFICATION) security aspect is addressed in this configuration by the objective
for the environment OE.VERIFICATION.

The objectives OE.CARD-MANAGEMENT and OE.VERIFICATION contribute to cover this
threat by controlling the access to card management functions and by checking the
bytecode, respectively.

T.INTEG-APPLI-DATA This threat is countered by bytecode verification
(OE.VERIFICATION) and the isolation commitments stated in the (O.FIREWALL) objective.
This latter objective also relies in its turn on the correct identification of applets stated in
(O.SID). Moreover, as the firewall is dynamically enforced, it shall never stop operating,
as stated in the (O.OPERATE) objective.

As the firewall is a software tool automating critical controls, the objective O.ALARM asks
for it to provide clear warning and error messages, so that the appropriate counter-
measure can be taken.

The objectives OE.CARD-MANAGEMENT and OE.VERIFICATION contribute to cover this
threat by controlling the access to card management functions and by checking the
bytecode, respectively.

The objectives OE.SCP.RECOVERY and OE.SCP.SUPPORT are intended to support the
O.OPERATE and O.ALARM objectives of the TOE, so they are indirectly related to the
threats that these latter objectives contribute to counter.

Concerning the confidentiality and integrity of application sensitive data, as applets may
need to share some data or communicate with the CAD, cryptographic functions are
required to actually protect the exchanged information (O.CIPHER). Remark that even if
the TOE shall provide access to the appropriate TSFs, it is still the responsibility of the
applets to use them. Keys and PIN's are particular cases of an application's sensitive data
(the Java Card System may possess keys as well) that ask for appropriate management
(O.KEY-MNGT, O.PIN-MNGT, O.TRANSACTION). If the PIN class of the Java Card API is
used, the objective (O.FIREWALL) is also concerned.

Other application data that is sent to the applet as clear text arrives to the APDU buffer,
which is a resource shared by all applications. The integrity of the information stored in
that buffer is ensured by the (O.GLOBAL_ARRAYS_INTEG) objective.

Finally, any attempt to read a piece of information that was previously used by an
application but has been logically deleted is countered by the O.REALLOCATION objective.
That objective states that any information that was formerly stored in a memory block
shall be cleared before the block is reused.

T.INTEG-JCS-CODE This threat is countered by the list of properties described in the
(#.VERIFICATION) security aspect. Bytecode verification ensures that each of the
instructions used on the Java Card platform is used for its intended purpose and in the
intended scope of accessibility. As none of these instructions enables modifying a piece of
code, no Java Card applet can therefore be executed to modify a piece of code. Native
applications are also harmless because of the objective (O.NATIVE), so no application can
be run to modify a piece of code.

The (#.VERIFICATION) security aspect is addressed in this configuration by the objective
for the environment OE.VERIFICATION.

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 45/87

The objectives OE.CARD-MANAGEMENT and OE.VERIFICATION contribute to cover this
threat by controlling the access to card management functions and by checking the
bytecode, respectively.

T.INTEG-JCS-DATA This threat is countered by bytecode verification (OE.VERIFICATION)
and the isolation commitments stated in the (O.FIREWALL) objective. This latter objective
also relies in its turn on the correct identification of applets stated in (O.SID). Moreover,
as the firewall is dynamically enforced, it shall never stop operating, as stated in the
(O.OPERATE) objective.

As the firewall is a software tool automating critical controls, the objective O.ALARM asks
for it to provide clear warning and error messages, so that the appropriate counter-
measure can be taken.

The objectives OE.CARD-MANAGEMENT and OE.VERIFICATION contribute to cover this
threat by controlling the access to card management functions and by checking the
bytecode, respectively.

The objectives OE.SCP.RECOVERY and OE.SCP.SUPPORT are intended to support the
O.OPERATE and O.ALARM objectives of the TOE, so they are indirectly related to the
threats that these latter objectives contribute to counter.

6.3.1.3 IDENTITY USURPATION

T.SID.1 As impersonation is usually the result of successfully disclosing and modifying some
assets, this threat is mainly countered by the objectives concerning the isolation of
application data (like PINs), ensured by the (O.FIREWALL). Uniqueness of subject-identity
(O.SID) also participates to face this threat. It should be noticed that the AIDs, which are
used for applet identification, are TSF data.

The installation parameters of an applet (like its name) are loaded into a global array that
is also shared by all the applications. The disclosure of those parameters (which could be
used to impersonate the applet) is countered by the objective
(O.GLOBAL_ARRAYS_CONFID) and (O.GLOBAL_ARRAYS_INTEG).

The objective OE.CARD-MANAGEMENT contributes, by preventing usurpation of identity
resulting from a malicious installation of an applet on the card, to counter this threat.

T.SID.2 This is covered by integrity of TSF data, subject-identification (O.SID), the firewall
(O.FIREWALL) and its good working order (O.OPERATE).

The objectives OE.SCP.RECOVERY and OE.SCP.SUPPORT are intended to support the
O.OPERATE objective of the TOE, so they are indirectly related to the threats that this
latter objective contributes to counter.

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 46/87

6.3.1.4 UNAUTHORIZED EXECUTION

T.EXE-CODE.1 Unauthorized execution of a method is prevented by the objective
OE.VERIFICATION. This threat particularly concerns the point (8) of the security aspect
#VERIFICATION (access modifiers and scope of accessibility for classes, fields and
methods). The O.FIREWALL objective is also concerned, because it prevents the
execution of non-shareable methods of a class instance by any subject apart from the
class instance owner.

T.EXE-CODE.2 Unauthorized execution of a method fragment or arbitrary data is prevented
by the objective OE.VERIFICATION. This threat particularly concerns those points of the
security aspect related to control flow confinement and the validity of the method
references used in the bytecodes.

T.NATIVE This threat is countered by O.NATIVE which ensures that a Java Card applet can
only access native methods indirectly that is, through a secure API. In addition to this, the
bytecode verifier also prevents the program counter of an applet to jump into a piece of
native code by confining the control flow to the currently executed method
(OE.VERIFICATION).

6.3.1.5 DENIAL OF SERVICE

T.RESOURCES This threat is directly countered by objectives on resource-management
(O.RESOURCES) for runtime purposes and good working order (O.OPERATE) in a general
manner.

It should be noticed that, for what relates to CPU usage, the Java Card platform is single-
threaded and it is possible for an ill-formed application (either native or not) to
monopolize the CPU. However, a smart card can be physically interrupted (card removal
or hardware reset) and most CADs implement a timeout policy that prevent them from
being blocked should a card fails to answer. That point is out of scope of this Protection
Profile, though.

Finally, the objectives OE.SCP.RECOVERY and OE.SCP.SUPPORT are intended to support
the O.OPERATE and O.RESOURCES objectives of the TOE, so they are indirectly related to
the threats that these latter objectives contribute to counter.

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 47/87

6.3.1.6 MISCELLANEOUS

T.PHYSICAL Covered by OE.SCP.IC. Physical protections rely on the underlying platform
and are therefore an environmental issue.

6.3.2 ASSUMPTIONS

A.NO-DELETION The assumption A.NO-DELETION is upheld by the environmental
objective OE.NO-DELETION which guarantees that no installed applets (or packages) shall
be deleted from the card. The environmental objective OE.CARD-MANAGEMENT also
upholds this assumption by controlling the access to card management functions such as
applets deletion.

A.NO-INSTALL This assumption is upheld by the environmental objective OE.NO-INSTALL
which imposes that no post-issuance installation of applets is permitted. The
environmental objective OE.CARD-MANAGEMENT contributes in uphelding this assumption
by controlling the access to card management functions such as the installation of
applets.

6.3.3 SPD AND SECURITY OBJECTIVES

Threats Security Objectives Rationale

T.CONFID-
APPLI-DATA

OE.SCP.RECOVERY, OE.SCP.SUPPORT, OE.CARD-
MANAGEMENT, O.SID, O.OPERATE, O.FIREWALL,
O.REALLOCATION, O.GLOBAL_ARRAYS_CONFID,
O.ALARM, O.TRANSACTION, O.CIPHER, O.PIN-MNGT,
O.KEY-MNGT, OE.VERIFICATION

Section
6.3.1

T.CONFID-JCS-
CODE

OE.CARD-MANAGEMENT, O.NATIVE,
OE.VERIFICATION

Section
6.3.1

T.CONFID-JCS-
DATA

OE.SCP.RECOVERY, OE.SCP.SUPPORT, OE.CARD-
MANAGEMENT, O.SID, O.OPERATE, O.FIREWALL,
O.ALARM, OE.VERIFICATION

Section
6.3.1

T.INTEG-
APPLI-CODE

OE.CARD-MANAGEMENT, O.NATIVE,
OE.VERIFICATION

Section
6.3.1

T.INTEG-
APPLI-DATA

OE.SCP.RECOVERY, OE.SCP.SUPPORT, OE.CARD-
MANAGEMENT, O.SID, O.OPERATE, O.FIREWALL,
O.REALLOCATION, O.GLOBAL_ARRAYS_INTEG,
O.ALARM, O.TRANSACTION, O.CIPHER, O.PIN-MNGT,
O.KEY-MNGT, OE.VERIFICATION

Section
6.3.1

T.INTEG-JCS-
CODE

OE.CARD-MANAGEMENT, O.NATIVE,
OE.VERIFICATION

Section
6.3.1

T.INTEG-JCS-
DATA

OE.SCP.RECOVERY, OE.SCP.SUPPORT, OE.CARD-
MANAGEMENT, O.SID, O.OPERATE, O.FIREWALL,
O.ALARM, OE.VERIFICATION

Section
6.3.1

T.SID.1
OE.CARD-MANAGEMENT, O.FIREWALL,
O.GLOBAL_ARRAYS_CONFID,

Section
6.3.1

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 48/87

Threats Security Objectives Rationale

O.GLOBAL_ARRAYS_INTEG, O.SID

T.SID.2
OE.SCP.RECOVERY, OE.SCP.SUPPORT, O.SID,
O.OPERATE, O.FIREWALL

Section
6.3.1

T.EXE-CODE.1 O.FIREWALL, OE.VERIFICATION
Section
6.3.1

T.EXE-CODE.2 OE.VERIFICATION
Section
6.3.1

T.NATIVE O.NATIVE, OE.VERIFICATION
Section
6.3.1

T.RESOURCES
O.OPERATE, O.RESOURCES, OE.SCP.RECOVERY,
OE.SCP.SUPPORT

Section
6.3.1

T.PHYSICAL OE.SCP.IC
Section
6.3.1

Table 1 Threats and Security Objectives - Coverage

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 49/87

Security Objectives Threats

O.SID
T.CONFID-APPLI-DATA, T.CONFID-
JCS-DATA, T.INTEG-APPLI-DATA,
T.INTEG-JCS-DATA, T.SID.1, T.SID.2

O.FIREWALL

T.CONFID-APPLI-DATA, T.CONFID-
JCS-DATA, T.INTEG-APPLI-DATA,
T.INTEG-JCS-DATA, T.SID.1, T.SID.2,
T.EXE-CODE.1

O.GLOBAL_ARRAYS_CONFID T.CONFID-APPLI-DATA, T.SID.1

O.GLOBAL_ARRAYS_INTEG T.INTEG-APPLI-DATA, T.SID.1

O.NATIVE
T.CONFID-JCS-CODE, T.INTEG-APPLI-
CODE, T.INTEG-JCS-CODE, T.NATIVE

O.OPERATE

T.CONFID-APPLI-DATA, T.CONFID-
JCS-DATA, T.INTEG-APPLI-DATA,
T.INTEG-JCS-DATA, T.SID.2,
T.RESOURCES

O.RESOURCES T.RESOURCES

O.REALLOCATION
T.CONFID-APPLI-DATA, T.INTEG-
APPLI-DATA

O.ALARM
T.CONFID-APPLI-DATA, T.CONFID-
JCS-DATA, T.INTEG-APPLI-DATA,
T.INTEG-JCS-DATA

O.CIPHER
T.CONFID-APPLI-DATA, T.INTEG-
APPLI-DATA

O.KEY-MNGT
T.CONFID-APPLI-DATA, T.INTEG-
APPLI-DATA

O.PIN-MNGT
T.CONFID-APPLI-DATA, T.INTEG-
APPLI-DATA

O.TRANSACTION
T.CONFID-APPLI-DATA, T.INTEG-
APPLI-DATA

OE.CARD-MANAGEMENT

T.CONFID-APPLI-DATA, T.CONFID-
JCS-CODE, T.CONFID-JCS-DATA,
T.INTEG-APPLI-CODE, T.INTEG-APPLI-
DATA, T.INTEG-JCS-CODE, T.INTEG-
JCS-DATA, T.SID.1

OE.NO-DELETION

OE.NO-INSTALL

OE.SCP.IC T.PHYSICAL

OE.SCP.RECOVERY

T.CONFID-APPLI-DATA, T.CONFID-
JCS-DATA, T.INTEG-APPLI-DATA,
T.INTEG-JCS-DATA, T.SID.2,
T.RESOURCES

OE.SCP.SUPPORT T.CONFID-APPLI-DATA, T.CONFID-

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 50/87

Security Objectives Threats

JCS-DATA, T.INTEG-APPLI-DATA,
T.INTEG-JCS-DATA, T.SID.2,
T.RESOURCES

OE.VERIFICATION

T.CONFID-APPLI-DATA, T.CONFID-
JCS-CODE, T.CONFID-JCS-DATA,
T.INTEG-APPLI-CODE, T.INTEG-APPLI-
DATA, T.INTEG-JCS-CODE, T.INTEG-
JCS-DATA, T.EXE-CODE.1, T.EXE-
CODE.2, T.NATIVE

Table 2 Security Objectives and Threats - Coverage

Assumptions
Security objectives for the Operational
Environment

Rationale

A.NO-
DELETION

OE.NO-DELETION, OE.CARD-MANAGEMENT
Section
6.3.2

A.NO-INSTALL OE.NO-INSTALL, OE.CARD-MANAGEMENT
Section
6.3.2

Table 3 Assumptions and Security Objectives for the Operational Environment -
Coverage

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 51/87

7 SECURITY FUNCTIONAL REQUIREMENTS

7.1 SECURITY FUNCTIONAL REQUIREMENTS

This section defines the detailed security requirements that shall be satisfied by the Closed
configuration of the TOE.

Subjects are active components of the TOE that (essentially) act on the behalf of users. The
users of the TOE include people or institutions (like the applet developer, the card issuer, the
verification authority), hardware (like the CAD where the card is inserted or the PCD) and
software components (like the application packages installed on the card). Some of the users
may just be aliases for other users. For instance, the verification authority in charge of the
bytecode verification of the applications may be just an alias for the card issuer.

Subjects (prefixed with an "S") are described in the following table:

Subject Description

S.JCRE

The Java Card RE is responsible on behalf of the card issuer of the
bytecode execution and runtime environment functionalities. It is the
process that manages applet selection and de-selection, along with the
delivery of APDUs from and to the smart card device. This subject is
unique.

S.JCVM
The Java Card VM is the bytecode interpreter. This subjet dynamically
enforces the firewall, that is, at runtime.

S.LOCAL
Operand stack of a JCVM frame, or local variable of a JCVM frame
containing an object or an array of references.

S.MEMBER Any object's field, static field or array position.

S.PACKAGE
A package is a namespace within the Java programming language that
may contain classes and interfaces, and in the context of Java Card
technology, it defines either a user library, or one or several applets.

Objects (prefixed with an "O") are described in the following table:

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 52/87

Object Description

O.APPLET Any installed applet, its code and data.

O.JAVAOBJECT
Java class instance or array. It should be noticed that KEYS, PIN,
arrays and applet instances are specific objects in the Java
programming language.

Information (prefixed with an "I") is described in the following table:

Information Description

I.DATA
JCVM Reference Data: objectref addresses of APDU buffer, JCRE-
owned instances of APDU class and byte array for install method.

Security attributes linked to these subjects, objects and information are described in the
following table with their values (used in enforcing the SFRs):

Security
attribute

Description/Value

Active Applets
The set of the active applets' AIDs. An active applet is an applet
that is selected on at least one of the logical channels.

Applet Selection
Status

"Selected" or "Deselected".

Applet's version
number

The version number of an applet (package) indicated in the export
file.

Context Package AID or "Java Card RE".

Currently Active
Context

Package AID or "Java Card RE".

LC Selection
Status

Multiselectable, Non-multiselectable or "None".

LifeTime CLEAR_ON_DESELECT or PERSISTENT (*).

Package AID The AID of each package indicated in the export file.

Registered
applet AID

The AID of the applet instance registered on the card.

Selected Applet
Context

Package AID or "None".

Sharing Standards, SIO, Java Card RE entry point, or global array.

(*) Transient objects of type CLEAR_ON_RESET behave like persistent objects in that they can be
accessed only when the Currently Active Context is the object's context.

Operations (prefixed with "OP") are described in the following table. Each operation has a
specific number of parameters given between brackets, among which there is the "accessed

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 53/87

object", the first one, when applicable. Parameters may be seen as security attributes that
are under the control of the subject performing the operation.

Operation Description

OP.ARRAY_ACCESS(O.JAVAOBJECT,
field)

Read/Write an array component.

OP.CREATE(Sharing, LifeTime) (*)
Creation of an object (new or
makeTransient call).

OP.INSTANCE_FIELD(O.JAVAOBJECT,
field)

Read/Write a field of an instance of a class
in the Java programming language.

OP.INVK_VIRTUAL(O.JAVAOBJECT,
method, arg1,...)

Invoke a virtual method (either on a class
instance or an array object).

OP.INVK_INTERFACE(O.JAVAOBJECT,
method, arg1,...)

Invoke an interface method.

OP.JAVA(...)

Any access in the sense of [JCRE22],
§6.2.8. It stands for one of the operations
OP.ARRAY_ACCESS, OP.INSTANCE_FIELD,
OP.INVK_VIRTUAL, OP.INVK_INTERFACE,
OP.THROW, OP.TYPE_ACCESS.

OP.PUT(S1,S2,I)
Transfer a piece of information I from S1 to
S2.

OP.THROW(O.JAVAOBJECT)
Throwing of an object (athrow, see
[JCRE22], §6.2.8.7).

OP.TYPE_ACCESS(O.JAVAOBJECT,
class)

Invoke checkcast or instanceof on an object
in order to access to classes (standard or
shareable interfaces objects).

(*) For this operation, there is no accessed object. This rule enforces that shareable transient objects
are not allowed. For instance, during the creation of an object, the JavaCardClass attribute's value is
chosen by the creator.

7.1.1 COREG_LC SECURITY FUNCTIONAL REQUIREMENTS

The CoreG_LC contains the requirements concerning the runtime environment of the Java
Card System implementing logical channels. This includes the firewall policy and the
requirements related to the Java Card API. Logical channels are a Java Card specification
version 2.2 feature.

Note that this group is the union of the security functional requirements from the Core
(CoreG) and the Logical channels (LCG) groups defined in [PP/0305] (cf. Java Card System
Protection Profile Collection [PP JCS]).

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 54/87

7.1.1.1 FIREWALL POLICY

FDP_ACC.2/FIREWALL Complete access control

FDP_ACC.2.1/FIREWALL The TSF shall enforce the FIREWALL access control SFP on
S.PACKAGE, S.JCRE, S.JCVM, O.JAVAOBJECT and all operations among subjects and
objects covered by the SFP.

Refinement:

The operations involved in the policy are:

o OP.CREATE,

o OP.INVK_INTERFACE,

o OP.INVK_VIRTUAL,

o OP.JAVA,

o OP.THROW,

o OP.TYPE_ACCESS.

FDP_ACC.2.2/FIREWALL The TSF shall ensure that all operations between any subject
controlled by the TSF and any object controlled by the TSF are covered by an access
control SFP.

Application note:

It should be noticed that accessing array's components of a static array, and more generally
fields and methods of static objects, is an access to the corresponding O.JAVAOBJECT.

FDP_ACF.1/FIREWALL Security attribute based access control

FDP_ACF.1.1/FIREWALL The TSF shall enforce the FIREWALL access control SFP to
objects based on the following:

Subject/Object Security attributes

S.PACKAGE LC Selection Status

S.JCVM Active Applets, Currently Active Context

S.JCRE Selected Applet Context

O.JAVAOBJECT Sharing, Context, LifeTime

FDP_ACF.1.2/FIREWALL The TSF shall enforce the following rules to determine if an
operation among controlled subjects and controlled objects is allowed:

o R.JAVA.1 ([JCRE22], §6.2.8): S.PACKAGE may freely perform
OP.ARRAY_ACCESS, OP.INSTANCE_FIELD, OP.INVK_VIRTUAL,

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 55/87

OP.INVK_INTERFACE, OP.THROW or OP.TYPE_ACCESS upon any
O.JAVAOBJECT whose Sharing attribute has value "JCRE entry point" or
"global array".

o R.JAVA.2 ([JCRE22], §6.2.8): S.PACKAGE may freely perform
OP.ARRAY_ACCESS, OP.INSTANCE_FIELD, OP.INVK_VIRTUAL,
OP.INVK_INTERFACE or OP.THROW upon any O.JAVAOBJECT whose Sharing
attribute has value "Standard" and whose Lifetime attribute has value
"PERSISTENT" only if O.JAVAOBJECT's Context attribute has the same value as
the active context.

o R.JAVA.3 ([JCRE22], §6.2.8.10): S.PACKAGE may perform
OP.TYPE_ACCESS upon an O.JAVAOBJECT whose Sharing attribute has value
"SIO" only if O.JAVAOBJECT is being cast into (checkcast) or is being verified
as being an instance of (instanceof) an interface that extends the Shareable
interface.

o R.JAVA.4 ([JCRE22], §6.2.8.6): S.PACKAGE may perform
OP.INVK_INTERFACE upon an O.JAVAOBJECT whose Sharing attribute has the
value "SIO", and whose Context attribute has the value "Package AID", only if
the invoked interface method extends the Shareable interface and one of the
following conditions applies:

a) The value of the attribute Selection Status of the package whose AID is
"Package AID" is "Multiselectable",

b) The value of the attribute Selection Status of the package whose AID is
"Package AID" is "Non-multiselectable", and either "Package AID" is the
value of the currently selected applet or otherwise "Package AID" does not
occur in the attribute Active Applets.

o R.JAVA.5: S.PACKAGE may perform OP.CREATE only if the value of the
Sharing parameter is "Standard".

FDP_ACF.1.3/FIREWALL The TSF shall explicitly authorise access of subjects to objects
based on the following additional rules:

o 1) The subject S.JCRE can freely perform OP.JAVA(") and OP.CREATE, with
the exception given in FDP_ACF.1.4/FIREWALL, provided it is the Currently
Active Context.

o 2) The only means that the subject S.JCVM shall provide for an application
to execute native code is the invocation of a Java Card API method (through
OP.INVK_INTERFACE or OP.INVK_VIRTUAL).

FDP_ACF.1.4/FIREWALL The TSF shall explicitly deny access of subjects to objects based
on the following additional rules:

o 1) Any subject with OP.JAVA upon an O.JAVAOBJECT whose LifeTime
attribute has value "CLEAR_ON_DESELECT" if O.JAVAOBJECT's Context
attribute is not the same as the Selected Applet Context.

o 2) Any subject attempting to create an object by the means of OP.CREATE
and a "CLEAR_ON_DESELECT" LifeTime parameter if the active context is not
the same as the Selected Applet Context.

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 56/87

Application note:

In the case of an array type, fields are components of the array ([JVM], §2.14, §2.7.7), as
well as the length; the only methods of an array object are those inherited from the Object
class.

The Sharing attribute defines four categories of objects:

• Standard ones, whose both fields and methods are under the firewall policy,

• Shareable interface Objects (SIO), which provide a secure mechanism for inter-applet
communication,

• JCRE entry points (Temporary or Permanent), who have freely accessible methods
but protected fields,

• Global arrays, having both unprotected fields (including components; refer to
JavaCardClass discussion above) and methods.

When a new object is created, it is associated with the Currently Active Context. But the
object is owned by the applet instance within the Currently Active Context when the object is
instantiated ([JCRE22], §6.1.3). An object is owned by an applet instance, by the JCRE or by
the package library where it has been defined (these latter objects can only be arrays that
initialize static fields of packages).

([JCRE22], Glossary) Selected Applet Context. The Java Card RE keeps track of the currently selected
Java Card applet. Upon receiving a SELECT command with this applet's AID, the Java Card RE makes
this applet the Selected Applet Context. The Java Card RE sends all APDU commands to the Selected
Applet Context.

While the expression "Selected Applet Context" refers to a specific installed applet, the
relevant aspect to the policy is the context (package AID) of the selected applet. In this
policy, the "Selected Applet Context" is the AID of the selected package.

([JCRE22], §6.1.2.1) At any point in time, there is only one active context within the Java Card VM
(this is called the Currently Active Context).

It should be noticed that the invocation of static methods (or access to a static field) is not
considered by this policy, as there are no firewall rules. They have no effect on the active
context as well and the "acting package" is not the one to which the static method belongs
to in this case.

It should be noticed that the Java Card platform, version 2.2.x and version 3 Classic Edition,
introduces the possibility for an applet instance to be selected on multiple logical channels at
the same time, or accepting other applets belonging to the same package being selected
simultaneously. These applets are referred to as multiselectable applets. Applets that belong
to a same package are either all multiselectable or not ([JCVM22], §2.2.5). Therefore, the
selection mode can be regarded as an attribute of packages. No selection mode is defined
for a library package.

An applet instance will be considered an active applet instance if it is currently selected in at
least one logical channel. An applet instance is the currently selected applet instance only if

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 57/87

it is processing the current command. There can only be one currently selected applet
instance at a given time. ([JCRE22], §4).

FDP_IFC.1/JCVM Subset information flow control

FDP_IFC.1.1/JCVM The TSF shall enforce the JCVM information flow control SFP on
S.JCVM, S.LOCAL, S.MEMBER, I.DATA and OP.PUT(S1, S2, I).

Application note:

It should be noticed that references of temporary Java Card RE entry points, which cannot
be stored in class variables, instance variables or array components, are transferred from the
internal memory of the Java Card RE (TSF data) to some stack through specific APIs (Java
Card RE owned exceptions) or Java Card RE invoked methods (such as the process(APDU
apdu)); these are causes of OP.PUT(S1,S2,I) operations as well.

FDP_IFF.1/JCVM Simple security attributes

FDP_IFF.1.1/JCVM The TSF shall enforce the JCVM information flow control SFP
based on the following types of subject and information security attributes:

Subjects Security attributes

S.JCVM Currently Active Context

FDP_IFF.1.2/JCVM The TSF shall permit an information flow between a controlled subject
and controlled information via a controlled operation if the following rules hold:

o An operation OP.PUT(S1, S.MEMBER, I.DATA) is allowed if and only if the
Currently Active Context is "Java Card RE";

o other OP.PUT operations are allowed regardless of the Currently Active
Context's value.

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 58/87

FDP_IFF.1.3/JCVM The TSF shall enforce the [assignment: additional information
flow control SFP rules].

FDP_IFF.1.4/JCVM The TSF shall explicitly authorise an information flow based on the
following rules: [assignment: rules, based on security attributes, that explicitly
authorise information flows].

FDP_IFF.1.5/JCVM The TSF shall explicitly deny an information flow based on the
following rules: [assignment: rules, based on security attributes, that explicitly
deny information flows].

Application note:

The storage of temporary Java Card RE-owned objects references is runtime-enforced
([JCRE22], §6.2.8.1-3).

It should be noticed that this policy essentially applies to the execution of bytecode. Native
methods, the Java Card RE itself and possibly some API methods can be granted specific
rights or limitations through the FDP_IFF.1.3/JCVM to FDP_IFF.1.5/JCVM elements. The way
the Java Card virtual machine manages the transfer of values on the stack and local
variables (returned values, uncaught exceptions) from and to internal registers is
implementation-dependent. For instance, a returned reference, depending on the
implementation of the stack frame, may transit through an internal register prior to being
pushed on the stack of the invoker. The returned bytecode would cause more than one
OP.PUT operation under this scheme.

FDP_RIP.1/OBJECTS Subset residual information protection

FDP_RIP.1.1/OBJECTS The TSF shall ensure that any previous information content of a
resource is made unavailable upon the allocation of the resource to the following
objects: class instances and arrays.

Application note:

The semantics of the Java programming language requires for any object field and array
position to be initialized with default values when the resource is allocated [JVM], §2.5.1.

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 59/87

FMT_MSA.1/JCRE Management of security attributes

FMT_MSA.1.1/JCRE The TSF shall enforce the FIREWALL access control SFP to
restrict the ability to modify the security attributes Selected Applet Context to the
Java Card RE.

Application note:

The modification of the Selected Applet Context should be performed in accordance with the
rules given in [JCRE22], §4 and [JCVM22], §3.4.

FMT_MSA.1/JCVM Management of security attributes

FMT_MSA.1.1/JCVM The TSF shall enforce the FIREWALL access control SFP and the
JCVM information flow control SFP to restrict the ability to modify the security
attributes Currently Active Context and Active Applets to the Java Card VM
(S.JCVM).

Application note:

The modification of the Currently Active Context should be performed in accordance with the
rules given in [JCRE22], §4 and [JCVM22], §3.4.

FMT_MSA.2/FIREWALL_JCVM Secure security attributes

FMT_MSA.2.1/FIREWALL_JCVM The TSF shall ensure that only secure values are
accepted for all the security attributes of subjects and objects defined in the
FIREWALL access control SFP and the JCVM information flow control SFP.

Application note:

The following rules are given as examples only. For instance, the last two rules are
motivated by the fact that the Java Card API defines only transient arrays factory methods.
Future versions may allow the creation of transient objects belonging to arbitrary classes;
such evolution will naturally change the range of "secure values" for this component.

• The Context attribute of an O.JAVAOBJECT must correspond to that of an installed
applet or be "Java Card RE".

• An O.JAVAOBJECT whose Sharing attribute is a Java Card RE entry point or a global
array necessarily has "Java Card RE" as the value for its Context security attribute.

• An O.JAVAOBJECT whose Sharing attribute value is a global array necessarily has
"array of primitive type" as a JavaCardClass security attribute's value.

• Any O.JAVAOBJECT whose Sharing attribute value is not "Standard" has a
PERSISTENT-LifeTime attribute's value.

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 60/87

• Any O.JAVAOBJECT whose LifeTime attribute value is not PERSISTENT has an array
type as JavaCardClass attribute's value.

FMT_MSA.3/FIREWALL Static attribute initialisation

FMT_MSA.3.1/FIREWALL The TSF shall enforce the FIREWALL access control SFP to
provide restrictive default values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2/FIREWALL [Editorially Refined] The TSF shall not allow any role to
specify alternative initial values to override the default values when an object or
information is created.

Application note:

FMT_MSA.3.1/FIREWALL

• Objects' security attributes of the access control policy are created and initialized at
the creation of the object or the subject. Afterwards, these attributes are no longer
mutable (FMT_MSA.1/JCRE). At the creation of an object (OP.CREATE), the newly created
object, assuming that the FIREWALL access control SFP permits the operation, gets its
Lifetime and Sharing attributes from the parameters of the operation; on the contrary, its
Context attribute has a default value, which is its creator's Context attribute and AID
respectively ([JCRE22], §6.1.3). There is one default value for the Selected Applet Context
that is the default applet identifier's Context, and one default value for the Currently
Active Context that is "Java Card RE".

• The knowledge of which reference corresponds to a temporary entry point object or a
global array and which does not is solely available to the Java Card RE (and the Java Card
virtual machine).

FMT_MSA.3.2/FIREWALL

• The intent is that none of the identified roles has privileges with regard to the default
values of the security attributes. It should be noticed that creation of objects is an
operation controlled by the FIREWALL access control SFP. The operation shall fail anyway
if the created object would have had security attributes whose value violates
FMT_MSA.2.1/FIREWALL_JCVM.

FMT_MSA.3/JCVM Static attribute initialisation

FMT_MSA.3.1/JCVM The TSF shall enforce the JCVM information flow control SFP to
provide restrictive default values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2/JCVM [Editorially Refined] The TSF shall not allow any role to specify
alternative initial values to override the default values when an object or information is
created.

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 61/87

FMT_SMF.1 Specification of Management Functions

FMT_SMF.1.1 The TSF shall be capable of performing the following management functions:

o modify the Currently Active Context, the Selected Applet Context and the
Active Applets.

FMT_SMR.1 Security roles

FMT_SMR.1.1 The TSF shall maintain the roles:

o Java Card RE (JCRE),

o Java Card VM (JCVM).

FMT_SMR.1.2 The TSF shall be able to associate users with roles.

7.1.1.2 APPLICATION PROGRAMMING INTERFACE

The following SFRs are related to the Java Card API.

The whole set of cryptographic algorithms is generally not implemented because of limited
memory resources and/or limitations due to exportation. Therefore, the following
requirements only apply to the implemented subset.

It should be noticed that the execution of the additional native code is not within the TSF.
Nevertheless, access to API native methods from the Java Card System is controlled by TSF
because there is no difference between native and interpreted methods in their interface or
invocation mechanism.

FCS_CKM.1 Cryptographic key generation

FCS_CKM.1.1 The TSF shall generate cryptographic keys in accordance with a specified
cryptographic key generation algorithm [assignment: cryptographic key generation
algorithm] and specified cryptographic key sizes [assignment: cryptographic key
sizes] that meet the following: [assignment: list of standards].

Application note:

• The keys can be generated and diversified in accordance with [JCAPI22] specification
in classes KeyBuilder and KeyPair (at least Session key generation).

• This component shall be instantiated according to the version of the Java Card API
applying to the security target and the implemented algorithms ([JCAPI22], [JCAPI221],
[JCAPI222] and [JCAPI3]).

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 62/87

FCS_CKM.2 Cryptographic key distribution

FCS_CKM.2.1 The TSF shall distribute cryptographic keys in accordance with a specified
cryptographic key distribution method [assignment: cryptographic key distribution
method] that meets the following: [assignment: list of standards].

Application note:

• Command SetKEY that meets [JCAPI22] specification.

• This component shall be instantiated according to the version of the Java Card API
applying to the security target and the implemented algorithms ([JCAPI22], [JCAPI221],
[JCAPI222] and [JCAPI3]).

FCS_CKM.3 Cryptographic key access

FCS_CKM.3.1 The TSF shall perform [assignment: type of cryptographic key access]
in accordance with a specified cryptographic key access method [assignment:
cryptographic key access method] that meets the following: [assignment: list of
standards].

Application note:

• The keys can be accessed as specified in [JCAPI22] Key class.

• This component shall be instantiated according to the version of the Java Card API
applicable to the security target and the implemented algorithms ([JCAPI22], [JCAPI221],
[JCAPI222] and [JCAPI3]).

FCS_CKM.4 Cryptographic key destruction

FCS_CKM.4.1 The TSF shall destroy cryptographic keys in accordance with a specified
cryptographic key destruction method [assignment: cryptographic key destruction
method] that meets the following: [assignment: list of standards].

Application note:

• The keys are reset as specified in [JCAPI22] Key class, with the method clearKey().
Any access to a cleared key for ciphering or signing shall throw an exception.

• This component shall be instantiated according to the version of the Java Card API
applicable to the security target and the implemented algorithms ([JCAPI22], [JCAPI221],
[JCAPI222] and [JCAPI3]).

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 63/87

FCS_COP.1 Cryptographic operation

FCS_COP.1.1 The TSF shall perform [assignment: list of cryptographic operations] in
accordance with a specified cryptographic algorithm [assignment: cryptographic
algorithm] and cryptographic key sizes [assignment: cryptographic key sizes] that
meet the following: [assignment: list of standards].

Application note:

• The TOE shall provide a subset of cryptographic operations defined in [JCAPI22] (see
javacardx.crypto.Cipher and javacardx.security packages).

• This component shall be instantiated according to the version of the Java Card API
applicable to the security target and the implemented algorithms ([JCAPI22], [JCAPI221],
[JCAPI222] and [JCAPI3]).

FDP_RIP.1/ABORT Subset residual information protection

FDP_RIP.1.1/ABORT The TSF shall ensure that any previous information content of a
resource is made unavailable upon the deallocation of the resource from the
following objects: any reference to an object instance created during an aborted
transaction.

Application note:

The events that provoke the de-allocation of a transient object are described in [JCRE22],
§5.1.

FDP_RIP.1/APDU Subset residual information protection

FDP_RIP.1.1/APDU The TSF shall ensure that any previous information content of a
resource is made unavailable upon the allocation of the resource to the following
objects: the APDU buffer.

Application note:

The allocation of a resource to the APDU buffer is typically performed as the result of a call
to the process() method of an applet.

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 64/87

FDP_RIP.1/bArray Subset residual information protection

FDP_RIP.1.1/bArray The TSF shall ensure that any previous information content of a
resource is made unavailable upon the deallocation of the resource from the
following objects: the bArray object.

Application note:

A resource is allocated to the bArray object when a call to an applet's install() method is
performed. There is no conflict with FDP_ROL.1 here because of the bounds on the rollback
mechanism (FDP_ROL.1.2/FIREWALL): the scope of the rollback does not extend outside the
execution of the install() method, and the de-allocation occurs precisely right after the return
of it.

FDP_RIP.1/KEYS Subset residual information protection

FDP_RIP.1.1/KEYS The TSF shall ensure that any previous information content of a
resource is made unavailable upon the deallocation of the resource from the
following objects: the cryptographic buffer (D.CRYPTO).

Application note:

• The javacard.security & javacardx.crypto packages do provide secure interfaces to
the cryptographic buffer in a transparent way. See javacard.security.KeyBuilder and Key
interface of [JCAPI22].

FDP_RIP.1/TRANSIENT Subset residual information protection

FDP_RIP.1.1/TRANSIENT The TSF shall ensure that any previous information content of
a resource is made unavailable upon the deallocation of the resource from the
following objects: any transient object.

Application note:

• The events that provoke the de-allocation of any transient object are described in
[JCRE22], §5.1.

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 65/87

FDP_ROL.1/FIREWALL Basic rollback

FDP_ROL.1.1/FIREWALL The TSF shall enforce the FIREWALL access control SFP
and the JCVM information flow control SFP to permit the rollback of the
operations OP.JAVA and OP.CREATE on the object O.JAVAOBJECT.

FDP_ROL.1.2/FIREWALL The TSF shall permit operations to be rolled back within the
scope of a select(), deselect(), process(), install() or uninstall() call,
notwithstanding the restrictions given in [JCRE22], §7.7, within the bounds of
the Commit Capacity ([JCRE22], §7.8), and those described in [JCAPI22].

Application note:

Transactions are a service offered by the APIs to applets. It is also used by some APIs to
guarantee the atomicity of some operation. This mechanism is either implemented in Java
Card platform or relies on the transaction mechanism offered by the underlying platform.
Some operations of the API are not conditionally updated, as documented in [JCAPI22] (see
for instance, PIN-blocking, PIN-checking, update of Transient objects).

7.1.1.3 CARD SECURITY MANAGEMENT

FAU_ARP.1 Security alarms

FAU_ARP.1.1 The TSF shall take one of the following actions:

o throw an exception,

o lock the card session

o reinitialize the Java Card System and its data

o [assignment: list of other actions]

upon detection of a potential security violation.

Refinement:

The "potential security violation" stands for one of the following events:

• CAP file inconsistency,

• typing error in the operands of a bytecode,

• applet life cycle inconsistency,

• card tearing (unexpected removal of the Card out of the CAD) and power failure,

• abort of a transaction in an unexpected context, (see abortTransaction(), [JCAPI22]
and ([JCRE22], §7.6.2),

• violation of the Firewall or JCVM SFPs,

• unavailability of resources,

• array overflow,

• [assignment: list of other runtime errors].

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 66/87

Application note:

• The developer shall provide the exhaustive list of actual potential security violations
the TOE reacts to. For instance, other runtime errors related to applet's failure like
uncaught exceptions.

• The bytecode verification defines a large set of rules used to detect a "potential
security violation". The actual monitoring of these "events" within the TOE only makes
sense when the bytecode verification is performed on-card.

• Depending on the context of use and the required security level, there are cases
where the card manager and the TOE must work in cooperation to detect and
appropriately react in case of potential security violation. This behavior must be described
in this component. It shall detail the nature of the feedback information provided to the
card manager (like the identity of the offending application) and the conditions under
which the feedback will occur (any occurrence of the java.lang.SecurityException
exception).

• The "locking of the card session" may not appear in the policy of the card manager.
Such measure should only be taken in case of severe violation detection; the same holds
for the re-initialization of the Java Card System. Moreover, the locking should occur when
"clean" re-initialization seems to be impossible.

• The locking may be implemented at the level of the Java Card System as a denial of
service (through some systematic "fatal error" message or return value) that lasts up to
the next "RESET" event, without affecting other components of the card (such as the card
manager). Finally, because the installation of applets is a sensitive process, security alerts
in this case should also be carefully considered herein.

FDP_SDI.2 Stored data integrity monitoring and action

FDP_SDI.2.1 The TSF shall monitor user data stored in containers controlled by the TSF for
[assignment: integrity errors] on all objects, based on the following attributes:
[assignment: user data attributes].

FDP_SDI.2.2 Upon detection of a data integrity error, the TSF shall [assignment: action
to be taken].

Application note:

• Although no such requirement is mandatory in the Java Card specification, at least an
exception shall be raised upon integrity errors detection on cryptographic keys, PIN values
and their associated security attributes. Even if all the objects cannot be monitored,
cryptographic keys and PIN objects shall be considered with particular attention by ST
authors as they play a key role in the overall security.

• It is also recommended to monitor integrity errors in the code of the native
applications and Java Card applets.

• For integrity sensitive application, their data shall be monitored (D.APP_I_DATA):
applications may need to protect information against unexpected modifications, and
explicitly control whether a piece of information has been changed between two accesses.
For example, maintaining the integrity of an electronic purse's balance is extremely

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 67/87

important because this value represents real money. Its modification must be controlled,
for illegal ones would denote an important failure of the payment system.

• A dedicated library could be implemented and made available to developers to
achieve better security for specific objects, following the same pattern that already exists
in cryptographic APIs, for instance.

FPR_UNO.1 Unobservability

FPR_UNO.1.1 The TSF shall ensure that [assignment: list of users and/or subjects]
are unable to observe the operation [assignment: list of operations] on
[assignment: list of objects] by [assignment: list of protected users and/or
subjects].

Application note:

Although it is not required in [JCRE22] specifications, the non-observability of operations on
sensitive information such as keys appears as impossible to circumvent in the smart card
world. The precise list of operations and objects is left unspecified, but should at least
concern secret keys and PIN codes when they exists on the card, as well as the
cryptographic operations and comparisons performed on them.

FPT_FLS.1 Failure with preservation of secure state

FPT_FLS.1.1 The TSF shall preserve a secure state when the following types of failures
occur: those associated to the potential security violations described in
FAU_ARP.1.

Application note:

The Java Card RE Context is the Current context when the Java Card VM begins running
after a card reset ([JCRE22], §6.2.3) or after a proximity card (PICC) activation sequence
([JCRE222]). Behavior of the TOE on power loss and reset is described in [JCRE22], §3.6
and §7.1. Behavior of the TOE on RF signal loss is described in [JCRE222], §3.6.1.

FPT_TDC.1 Inter-TSF basic TSF data consistency

FPT_TDC.1.1 The TSF shall provide the capability to consistently interpret the CAP files,
the bytecode and its data arguments when shared between the TSF and another
trusted IT product.

FPT_TDC.1.2 The TSF shall use

o the rules defined in [JCVM22] specification,

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 68/87

o the API tokens defined in the export files of reference implementation,

o [assignment: list of interpretation rules to be applied by the TSF]

when interpreting the TSF data from another trusted IT product.

Application note:

Concerning the interpretation of data between the TOE and the underlying Java Card
platform, it is assumed that the TOE is developed consistently with the SCP functions,
including memory management, I/O functions and cryptographic functions.

7.1.1.4 AID MANAGEMENT

FIA_ATD.1/AID User attribute definition

FIA_ATD.1.1/AID The TSF shall maintain the following list of security attributes belonging
to individual users:

o Package AID,

o Applet's version number,

o Registered applet AID,

o Applet Selection Status ([JCVM22], §6.5).

Refinement:

"Individual users" stand for applets.

Refinement:

"Individual users" stand for applets.

FIA_UID.2/AID User identification before any action

FIA_UID.2.1/AID The TSF shall require each user to be successfully identified before
allowing any other TSF-mediated actions on behalf of that user.

Application note:

• By users here it must be understood the ones associated to the packages (or applets)
that act as subjects of policies. In the Java Card System, every action is always performed
by an identified user interpreted here as the currently selected applet or the package that
is the subject's owner. Means of identification are provided during the loading procedure
of the package and the registration of applet instances.

• The role Java Card RE defined in FMT_SMR.1 is attached to an IT security function
rather than to a "user" of the CC terminology. The Java Card RE does not "identify" itself
to the TOE, but it is part of it.

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 69/87

FIA_USB.1/AID User-subject binding

FIA_USB.1.1/AID The TSF shall associate the following user security attributes with
subjects acting on the behalf of that user: Package AID.

FIA_USB.1.2/AID The TSF shall enforce the following rules on the initial association of
user security attributes with subjects acting on the behalf of users: [assignment: rules
for the initial association of attributes].

FIA_USB.1.3/AID The TSF shall enforce the following rules governing changes to the user
security attributes associated with subjects acting on the behalf of users: [assignment:
rules for the changing of attributes].

Application note:

The user is the applet and the subject is the S.PACKAGE. The subject security attribute
"Context" shall hold the user security attribute "package AID".

FMT_MTD.1/JCRE Management of TSF data

FMT_MTD.1.1/JCRE The TSF shall restrict the ability to modify the list of registered
applets' AIDs to the JCRE.

Application note:

• The Java Card RE manages other TSF data such as the applet life cycle or CAP files,
but this management is implementation specific. Objects in the Java programming
language may also try to query AIDs of installed applets through the lookupAID(...) API
method.

FMT_MTD.3/JCRE Secure TSF data

FMT_MTD.3.1/JCRE The TSF shall ensure that only secure values are accepted for the
registered applets' AIDs.

7.2 SECURITY ASSURANCE REQUIREMENTS

The security assurance requirement level is EAL4 augmented with ALC_DVS.2 and
AVA_VAN.5.

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 70/87

7.3 SECURITY REQUIREMENTS RATIONALE

7.3.1 OBJECTIVES

7.3.1.1 SECURITY OBJECTIVES FOR THE TOE

7.3.1.1.1 IDENTIFICATION

O.SID Subjects' identity is AID-based (applets, packages), and is met by the following SFRs:
FIA_ATD.1/AID, FMT_MSA.1/JCRE, FMT_MSA.1/JCVM, FMT_MSA.3/FIREWALL,
FMT_MSA.3/JCVM, FMT_MTD.1/JCRE and FMT_MTD.3/JCRE.

Lastly, installation procedures ensure protection against forgery (the AID of an applet is
under the control of the TSFs) or re-use of identities (FIA_UID.2/AID, FIA_USB.1/AID).

7.3.1.1.2 EXECUTION

O.FIREWALL This objective is met by the FIREWALL access control policy
(FDP_ACC.2/FIREWALL and FDP_ACF.1/FIREWALL) and the JCVM information flow
control policy (FDP_IFF.1/JCVM, FDP_IFC.1/JCVM) The functional requirements of the
class FMT (FMT_MTD.1/JCRE, FMT_MTD.3/JCRE, FMT_SMR.1, FMT_SMF.1,
FMT_MSA.2/FIREWALL_JCVM, FMT_MSA.3/FIREWALL, FMT_MSA.3/JCVM,
FMT_MSA.1/JCRE and FMT_MSA.1/JCVM) also indirectly contribute to meet this objective.

O.GLOBAL_ARRAYS_CONFID Only arrays can be designated as global, and the only
global arrays required in the Java Card API are the APDU buffer and the byte array input
parameter (bArray) to an applet's install method. The clearing requirement of those
arrays is met by (FDP_RIP.1/APDU and FDP_RIP.1/bArray respectively). The JCVM
information flow control policy (FDP_IFF.1/JCVM, FDP_IFC.1/JCVM) prevents an
application from keeping a pointer to a shared buffer, which could be used to read its
contents when the buffer is being used by another application.

Protection of the array parameters of remotely invoked methods, which are global as well,
is covered by the general initialization of method parameters (FDP_RIP.1/OBJECTS,
FDP_RIP.1/ABORT, FDP_RIP.1/KEYS and FDP_RIP.1/TRANSIENT).

O.GLOBAL_ARRAYS_INTEG This objective is met by the JCVM information flow control
policy (FDP_IFF.1/JCVM, FDP_IFC.1/JCVM), which prevents an application from keeping a
pointer to the input/output buffer of the card, or any other global array that is shared by
all the applications. Such a pointer could be used to access and modify it when the buffer
is being used by another application.

O.NATIVE This security objective is covered by FDP_ACF.1/FIREWALL: the only means to
execute native code is the invocation of a Java Card API method.

O.OPERATE The TOE is protected in various ways against applets' actions (FPT_TDC.1), the
FIREWALL access control policy (FDP_ACC.2/FIREWALL and FDP_ACF.1/FIREWALL), and
is able to detect and block various failures or security violations during usual working
(FPT_FLS.1/JCS, FAU_ARP.1/JCS). Its security-critical parts and procedures are also
protected: applets' installation may be cleanly aborted (FDP_ROL.1/FIREWALL),

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 71/87

communication with external users and their internal subjects is well-controlled
(FIA_ATD.1/AID and FIA_USB.1/AID) to prevent alteration of TSF data (also protected by
components of the FPT class).

Almost every objective and/or functional requirement indirectly contributes to this one
too.

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 72/87

Application note: Startup of the TOE (TSF-testing) can be covered by FPT_TST.1. But this
latter SFR component is not mandatory in [JCRE22], but appears in most of security
requirements documents for masked applications. Testing could also occur randomly.
Otherwise, self-tests may become mandatory in order to comply to FIPS certification
[FIPS 140-2].

O.RESOURCES The TSFs detects stack/memory overflows during execution of applications
(FAU_ARP.1/JCS, FPT_FLS.1/JCS). Failed installations are not to create memory leaks
(FDP_ROL.1/FIREWALL) as well. Memory management is controlled by the TSF
(FMT_MTD.1/JCRE, FMT_MTD.3/JCRE, FMT_SMR.1 and FMT_SMF.1).

O.REALLOCATION This security objective is satisfied by the following SFRs:
FDP_RIP.1/APDU, FDP_RIP.1/bArray, FDP_RIP.1/ABORT, FDP_RIP.1/KEYS,
FDP_RIP.1/TRANSIENT, FDP_RIP.1/OBJECTS, which imposes that the contents of the re-
allocated block shall always be cleared before delivering the block.

7.3.1.1.3 SERVICES

O.ALARM This objective is met by FPT_FLS.1/JCS which guarantee that a secure state is
preserved by the TSF when failures occur, and FAU_ARP.1/JCS which defines TSF reaction
upon detection of a potential security violation.

O.CIPHER This security objective is directly covered by FCS_CKM.1, FCS_CKM.2,
FCS_CKM.3, FCS_CKM.4 and FCS_COP.1. The SFR FPR_UNO.1 contributes in covering this
security objective and controls the observation of the cryptographic operations which may
be used to disclose the keys.

O.KEY-MNGT This relies on the same security functional requirements as O.CIPHER, plus
FDP_RIP.1 and FDP_SDI.2 as well. Precisely it is met by the following components:
FCS_CKM.1, FCS_CKM.2, FCS_CKM.3, FCS_CKM.4, FCS_COP.1, FPR_UNO.1,
FDP_RIP.1/OBJECTS, FDP_RIP.1/APDU, FDP_RIP.1/bArray, FDP_RIP.1/ABORT,
FDP_RIP.1/KEYS and FDP_RIP.1/TRANSIENT.

O.PIN-MNGT This security objective is ensured by FDP_RIP.1/OBJECTS, FDP_RIP.1/APDU,
FDP_RIP.1/bArray, FDP_RIP.1/ABORT, FDP_RIP.1/KEYS, FDP_RIP.1/TRANSIENT
FPR_UNO.1, FDP_ROL.1/FIREWALL and FDP_SDI.2 security functional requirements. The
TSFs behind these are implemented by API classes. The firewall security functions
(FDP_ACC.2/FIREWALL and FDP_ACF.1/FIREWALL) shall protect the access to private and
internal data of the objects.

O.TRANSACTION Directly met by FDP_ROL.1/FIREWALL, FDP_RIP.1/ABORT,
FDP_RIP.1/APDU, FDP_RIP.1/bArray, FDP_RIP.1/KEYS, FDP_RIP.1/TRANSIENT and
FDP_RIP.1/OBJECTS (more precisely, by the element FDP_RIP.1.1/ABORT).

7.3.2 RATIONALE TABLES OF SECURITY OBJECTIVES AND SFRS

Security Objectives Security Functional Requirements Rationale

O.SID FIA_ATD.1/AID, FIA_UID.2/AID, Section

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 73/87

Security Objectives Security Functional Requirements Rationale

FMT_MTD.1/JCRE, FMT_MTD.3/JCRE,
FIA_USB.1/AID, FMT_MSA.1/JCRE,
FMT_MSA.1/JCVM,
FMT_MSA.3/FIREWALL,
FMT_MSA.3/JCVM

7.3.3.1

O.FIREWALL

FMT_MTD.1/JCRE, FMT_MTD.3/JCRE,
FDP_ACC.2/FIREWALL,
FDP_ACF.1/FIREWALL, FDP_IFC.1/JCVM,
FDP_IFF.1/JCVM, FMT_MSA.1/JCRE,
FMT_MSA.1/JCVM,
FMT_MSA.2/FIREWALL_JCVM,
FMT_MSA.3/FIREWALL,
FMT_MSA.3/JCVM, FMT_SMF.1,
FMT_SMR.1

Section
7.3.3.1

O.GLOBAL_ARRAYS_CONFID

FDP_RIP.1/bArray, FDP_RIP.1/APDU,
FDP_RIP.1/ABORT, FDP_RIP.1/KEYS,
FDP_RIP.1/TRANSIENT,
FDP_IFC.1/JCVM, FDP_IFF.1/JCVM,
FDP_RIP.1/OBJECTS

Section
7.3.3.1

O.GLOBAL_ARRAYS_INTEG FDP_IFC.1/JCVM, FDP_IFF.1/JCVM
Section
7.3.3.1

O.NATIVE FDP_ACF.1/FIREWALL
Section
7.3.3.1

O.OPERATE

FAU_ARP.1, FDP_ROL.1/FIREWALL,
FIA_ATD.1/AID, FPT_FLS.1, FPT_TDC.1,
FIA_USB.1/AID, FDP_ACC.2/FIREWALL,
FDP_ACF.1/FIREWALL

Section
7.3.3.1

O.RESOURCES

FAU_ARP.1, FDP_ROL.1/FIREWALL,
FPT_FLS.1, FMT_MTD.1/JCRE,
FMT_MTD.3/JCRE, FMT_SMF.1,
FMT_SMR.1

Section
7.3.3.1

O.REALLOCATION

FDP_RIP.1/APDU, FDP_RIP.1/bArray,
FDP_RIP.1/ABORT, FDP_RIP.1/KEYS,
FDP_RIP.1/TRANSIENT,
FDP_RIP.1/OBJECTS

Section
7.3.3.1

O.ALARM FPT_FLS.1, FAU_ARP.1
Section
7.3.3.1

O.CIPHER
FCS_CKM.1, FCS_CKM.2, FCS_CKM.3,
FCS_CKM.4, FCS_COP.1, FPR_UNO.1

Section
7.3.3.1

O.KEY-MNGT

FCS_CKM.1, FCS_CKM.2, FCS_CKM.3,
FCS_CKM.4, FCS_COP.1, FPR_UNO.1,
FDP_RIP.1/APDU, FDP_RIP.1/bArray,
FDP_RIP.1/ABORT, FDP_RIP.1/KEYS,
FDP_SDI.2, FDP_RIP.1/TRANSIENT,
FDP_RIP.1/OBJECTS

Section
7.3.3.1

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 74/87

Security Objectives Security Functional Requirements Rationale

O.PIN-MNGT

FDP_RIP.1/APDU, FDP_RIP.1/bArray,
FDP_RIP.1/ABORT, FDP_RIP.1/KEYS,
FPR_UNO.1, FDP_ROL.1/FIREWALL,
FDP_SDI.2, FDP_RIP.1/TRANSIENT,
FDP_ACC.2/FIREWALL,
FDP_ACF.1/FIREWALL,
FDP_RIP.1/OBJECTS

Section
7.3.3.1

O.TRANSACTION

FDP_ROL.1/FIREWALL,
FDP_RIP.1/ABORT, FDP_RIP.1/APDU,
FDP_RIP.1/bArray, FDP_RIP.1/KEYS,
FDP_RIP.1/TRANSIENT,
FDP_RIP.1/OBJECTS

Section
7.3.3.1

Table 4 Security Objectives and SFRs - Coverage

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 75/87

Security Functional
Requirements

Security Objectives

FDP_ACC.2/FIREWALL
O.FIREWALL, O.OPERATE, O.PIN-
MNGT

FDP_ACF.1/FIREWALL
O.FIREWALL, O.NATIVE, O.OPERATE,
O.PIN-MNGT

FDP_IFC.1/JCVM
O.FIREWALL,
O.GLOBAL_ARRAYS_CONFID,
O.GLOBAL_ARRAYS_INTEG

FDP_IFF.1/JCVM
O.FIREWALL,
O.GLOBAL_ARRAYS_CONFID,
O.GLOBAL_ARRAYS_INTEG

FDP_RIP.1/OBJECTS
O.GLOBAL_ARRAYS_CONFID,
O.REALLOCATION, O.KEY-MNGT,
O.PIN-MNGT, O.TRANSACTION

FMT_MSA.1/JCRE O.SID, O.FIREWALL

FMT_MSA.1/JCVM O.SID, O.FIREWALL

FMT_MSA.2/FIREWALL_JCVM O.FIREWALL

FMT_MSA.3/FIREWALL O.SID, O.FIREWALL

FMT_MSA.3/JCVM O.SID, O.FIREWALL

FMT_SMF.1 O.FIREWALL, O.RESOURCES

FMT_SMR.1 O.FIREWALL, O.RESOURCES

FCS_CKM.1 O.CIPHER, O.KEY-MNGT

FCS_CKM.2 O.CIPHER, O.KEY-MNGT

FCS_CKM.3 O.CIPHER, O.KEY-MNGT

FCS_CKM.4 O.CIPHER, O.KEY-MNGT

FCS_COP.1 O.CIPHER, O.KEY-MNGT

FDP_RIP.1/ABORT
O.GLOBAL_ARRAYS_CONFID,
O.REALLOCATION, O.KEY-MNGT,
O.PIN-MNGT, O.TRANSACTION

FDP_RIP.1/APDU
O.GLOBAL_ARRAYS_CONFID,
O.REALLOCATION, O.KEY-MNGT,
O.PIN-MNGT, O.TRANSACTION

FDP_RIP.1/bArray
O.GLOBAL_ARRAYS_CONFID,
O.REALLOCATION, O.KEY-MNGT,
O.PIN-MNGT, O.TRANSACTION

FDP_RIP.1/KEYS
O.GLOBAL_ARRAYS_CONFID,
O.REALLOCATION, O.KEY-MNGT,
O.PIN-MNGT, O.TRANSACTION

FDP_RIP.1/TRANSIENT
O.GLOBAL_ARRAYS_CONFID,
O.REALLOCATION, O.KEY-MNGT,

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 76/87

Security Functional
Requirements

Security Objectives

O.PIN-MNGT, O.TRANSACTION

FDP_ROL.1/FIREWALL
O.OPERATE, O.RESOURCES, O.PIN-
MNGT, O.TRANSACTION

FAU_ARP.1
O.OPERATE, O.RESOURCES,
O.ALARM

FDP_SDI.2 O.KEY-MNGT, O.PIN-MNGT

FPR_UNO.1
O.CIPHER, O.KEY-MNGT, O.PIN-
MNGT

FPT_FLS.1
O.OPERATE, O.RESOURCES,
O.ALARM

FPT_TDC.1 O.OPERATE

FIA_ATD.1/AID O.SID, O.OPERATE

FIA_UID.2/AID O.SID

FIA_USB.1/AID O.SID, O.OPERATE

FMT_MTD.1/JCRE O.SID, O.FIREWALL, O.RESOURCES

FMT_MTD.3/JCRE O.SID, O.FIREWALL, O.RESOURCES

Table 5 SFRs and Security Objectives

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 77/87

7.3.3 DEPENDENCIES

7.3.3.1 SFRS DEPENDENCIES

Requirements CC Dependencies Satisfied Dependencies

FDP_ACC.2/FIREWALL (FDP_ACF.1) FDP_ACF.1/FIREWALL

FDP_ACF.1/FIREWALL
(FDP_ACC.1) and
(FMT_MSA.3)

FDP_ACC.2/FIREWALL,
FMT_MSA.3/FIREWALL

FDP_IFC.1/JCVM (FDP_IFF.1) FDP_IFF.1/JCVM

FDP_IFF.1/JCVM
(FDP_IFC.1) and
(FMT_MSA.3)

FDP_IFC.1/JCVM,
FMT_MSA.3/JCVM

FDP_RIP.1/OBJECTS No dependencies

FMT_MSA.1/JCRE

(FDP_ACC.1 or
FDP_IFC.1) and
(FMT_SMF.1) and
(FMT_SMR.1)

FDP_ACC.2/FIREWALL,
FMT_SMR.1

FMT_MSA.1/JCVM

(FDP_ACC.1 or
FDP_IFC.1) and
(FMT_SMF.1) and
(FMT_SMR.1)

FDP_ACC.2/FIREWALL,
FDP_IFC.1/JCVM, FMT_SMR.1,
FMT_SMF.1

FMT_MSA.2/FIREWALL_JCVM

(FDP_ACC.1 or
FDP_IFC.1) and
(FMT_MSA.1) and
(FMT_SMR.1)

FDP_ACC.2/FIREWALL,
FMT_MSA.1/JCVM,
FDP_IFC.1/JCVM, FMT_SMR.1,
FMT_MSA.1/JCRE

FMT_MSA.3/FIREWALL
(FMT_MSA.1) and
(FMT_SMR.1)

FMT_MSA.1/JCVM,
FMT_SMR.1, FMT_MSA.1/JCRE

FMT_MSA.3/JCVM
(FMT_MSA.1) and
(FMT_SMR.1)

FMT_MSA.1/JCVM,
FMT_SMR.1

FMT_SMF.1 No dependencies

FMT_SMR.1 (FIA_UID.1) FIA_UID.2/AID

FCS_CKM.1
(FCS_CKM.2 or
FCS_COP.1) and
(FCS_CKM.4)

FCS_CKM.2, FCS_CKM.4

FCS_CKM.2

(FCS_CKM.1 or
FDP_ITC.1 or
FDP_ITC.2) and
(FCS_CKM.4)

FCS_CKM.1, FCS_CKM.4

FCS_CKM.3

(FCS_CKM.1 or
FDP_ITC.1 or
FDP_ITC.2) and
(FCS_CKM.4)

FCS_CKM.1, FCS_CKM.4

FCS_CKM.4
(FCS_CKM.1 or
FDP_ITC.1 or

FCS_CKM.1

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 78/87

Requirements CC Dependencies Satisfied Dependencies

FDP_ITC.2)

FCS_COP.1

(FCS_CKM.1 or
FDP_ITC.1 or
FDP_ITC.2) and
(FCS_CKM.4)

FCS_CKM.1, FCS_CKM.4

FDP_RIP.1/ABORT No dependencies

FDP_RIP.1/APDU No dependencies

FDP_RIP.1/bArray No dependencies

FDP_RIP.1/KEYS No dependencies

FDP_RIP.1/TRANSIENT No dependencies

FDP_ROL.1/FIREWALL
(FDP_ACC.1 or
FDP_IFC.1)

FDP_ACC.2/FIREWALL,
FDP_IFC.1/JCVM

FAU_ARP.1 (FAU_SAA.1)

FDP_SDI.2 No dependencies

FPR_UNO.1 No dependencies

FPT_FLS.1 No dependencies

FPT_TDC.1 No dependencies

FIA_ATD.1/AID No dependencies

FIA_UID.2/AID No dependencies

FIA_USB.1/AID (FIA_ATD.1) FIA_ATD.1/AID

FMT_MTD.1/JCRE
(FMT_SMF.1) and
(FMT_SMR.1)

FMT_SMF.1, FMT_SMR.1

FMT_MTD.3/JCRE (FMT_MTD.1) FMT_MTD.1/JCRE

Table 6 SFRs dependencies

7.3.3.1.1 RATIONALE FOR THE EXCLUSION OF DEPENDENCIES

The dependency FMT_SMF.1 of FMT_MSA.1/JCRE is unsupported. The dependency
between FMT_MSA.1/JCRE and FMT_SMF.1 is not satisfied because no management
functions are required for the Java Card RE.

The dependency FAU_SAA.1 of FAU_ARP.1 is unsupported. Potential violation
analysis is used to specify the set of auditable events whose occurrence or accumulated
occurrence held to indicate a potential violation of the SFRs, and any rules to be used to
perform the violation analysis. The dependency of FAU_ARP.1/JCS on this functional
requirement assumes that a "potential security violation" is an audit event indicated by
the FAU_SAA.1 component. The events listed in FAU_ARP.1/JCS are, on the contrary,
merely self-contained ones (arithmetic exception, ill-formed bytecodes, access failure) and
ask for a straightforward reaction of the TSFs on their occurrence at runtime. The JCVM
or other components of the TOE detect these events during their usual working order.
Thus, in principle there would be no applicable audit recording in this framework.

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 79/87

Moreover, no specification of one such recording is provided elsewhere. Therefore no set
of auditable events could possibly be defined.

7.3.3.2 SARS DEPENDENCIES

Requirements CC Dependencies Satisfied Dependencies

ADV_ARC.1 (ADV_FSP.1) and (ADV_TDS.1) ADV_FSP.4, ADV_TDS.3

ADV_FSP.4 (ADV_TDS.1) ADV_TDS.3

ADV_IMP.1 (ADV_TDS.3) and (ALC_TAT.1) ADV_TDS.3, ALC_TAT.1

ADV_TDS.3 (ADV_FSP.4) ADV_FSP.4

AGD_OPE.1 (ADV_FSP.1) ADV_FSP.4

AGD_PRE.1 No dependencies

ALC_CMC.4
(ALC_CMS.1) and (ALC_DVS.1) and
(ALC_LCD.1)

ALC_CMS.4, ALC_DVS.2,
ALC_LCD.1

ALC_CMS.4 No dependencies

ALC_DEL.1 No dependencies

ALC_DVS.2 No dependencies

ALC_LCD.1 No dependencies

ALC_TAT.1 (ADV_IMP.1) ADV_IMP.1

ASE_CCL.1
(ASE_ECD.1) and (ASE_INT.1) and
(ASE_REQ.1)

ASE_ECD.1, ASE_INT.1,
ASE_REQ.2

ASE_ECD.1 No dependencies

ASE_INT.1 No dependencies

ASE_OBJ.2 (ASE_SPD.1) ASE_SPD.1

ASE_REQ.2 (ASE_ECD.1) and (ASE_OBJ.2) ASE_ECD.1, ASE_OBJ.2

ASE_SPD.1 No dependencies

ASE_TSS.1
(ADV_FSP.1) and (ASE_INT.1) and
(ASE_REQ.1)

ADV_FSP.4, ASE_INT.1,
ASE_REQ.2

ATE_COV.2 (ADV_FSP.2) and (ATE_FUN.1) ADV_FSP.4, ATE_FUN.1

ATE_DPT.1
(ADV_ARC.1) and (ADV_TDS.2) and
(ATE_FUN.1)

ADV_ARC.1, ADV_TDS.3,
ATE_FUN.1

ATE_FUN.1 (ATE_COV.1) ATE_COV.2

ATE_IND.2
(ADV_FSP.2) and (AGD_OPE.1) and
(AGD_PRE.1) and (ATE_COV.1) and
(ATE_FUN.1)

ADV_FSP.4, AGD_OPE.1,
AGD_PRE.1, ATE_COV.2,
ATE_FUN.1

AVA_VAN.5

(ADV_ARC.1) and (ADV_FSP.4) and
(ADV_IMP.1) and (ADV_TDS.3) and
(AGD_OPE.1) and (AGD_PRE.1) and
(ATE_DPT.1)

ADV_ARC.1, ADV_FSP.4,
ADV_IMP.1, ADV_TDS.3,
AGD_OPE.1, AGD_PRE.1,
ATE_DPT.1

Table 7 SARs dependencies

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 80/87

7.3.4 RATIONALE FOR THE SECURITY ASSURANCE REQUIREMENTS

EAL4 is required for this type of TOE and product since it is intended to defend against
sophisticated attacks. This evaluation assurance level allows a developer to gain maximum
assurance from positive security engineering based on good practices. EAL4 represents the
highest practical level of assurance expected for a commercial grade product. In order to
provide a meaningful level of assurance that the TOE and its embedding product provide an
adequate level of defense against such attacks: the evaluators should have access to the low
level design and source code. The lowest for which such access is required is EAL4.

7.3.5 ALC_DVS.2 SUFFICIENCY OF SECURITY MEASURES

Development security is concerned with physical, procedural, personnel and other technical
measures that may be used in the development environment to protect the TOE and the
embedding product. The standard ALC_DVS.1 requirement mandated by EAL4 is not enough.
Due to the nature of the TOE and embedding product, it is necessary to justify the
sufficiency of these procedures to protect their confidentiality and integrity. ALC_DVS.2 has
no dependencies.

7.3.6 AVA_VAN.5 ADVANCED METHODICAL VULNERABILITY ANALYSIS

The TOE is intended to operate in hostile environments. AVA_VAN.5 "Advanced methodical
vulnerability analysis" is considered as the expected level for Java Card technology-based
products hosting sensitive applications, in particular in payment and identity areas.
AVA_VAN.5 has dependencies on ADV_ARC.1, ADV_FSP.1, ADV_TDS.3, ADV_IMP.1,
AGD_PRE.1 and AGD_OPE.1. All of them are satisfied by EAL4.

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 81/87

APPENDIX 1: GLOSSARY

Term Definition

AID

Application identifier, an ISO-7816 data format used for unique
identification of Java Card applets (and certain kinds of files in
card file systems). The Java Card platform uses the AID data
format to identify applets and packages. AIDs are administered by
the International Opens Organization (ISO), so they can be used
as unique identifiers.

AIDs are also used in the security policies (see “Context” below):
applets’ AIDs are related to the selection mechanisms, packages’
AIDs are used in the enforcement of the firewall. Note: although
they serve different purposes, they share the same namespace.

APDU

Application Protocol Data Unit, an ISO 7816-4 defined
communication format between the card and the off-card
applications. Cards receive requests for service from the CAD in
the form of APDUs. These are encapsulated in Java Card System
by the javacard.framework.APDU class ([JCAPI22]).

APDUs manage both the selection-cycle of the applets (through
Java Card RE mediation) and the communication with the
Currently selected applet.

APDU buffer

The APDU buffer is the buffer where the messages sent (received)
by the card depart from (arrive to). The Java Card RE owns an
APDU object (which is a Java Card RE Entry Point and an instance
of the javacard.framework.APDU class) that encapsulates APDU
messages in an internal byte array, called the APDU buffer. This
object is made accessible to the currently selected applet when
needed, but any permanent access (out-of selection-scope) is
strictly prohibited for security reasons.

Applet

The name given to any Java Card technology-based application.
An applet is the basic piece of code that can be selected for
execution from outside the card. Each applet on the card is
uniquely identified by its AID.

Applet deletion ager

The on-card component that embodies the mechanisms necessary
to delete an applet or library and its associated data on smart
cards using Java Card technology.

BCV

The bytecode verifier is the software component performing a
static analysis of the code to be loaded on the card. It checks
several kinds of properties, like the correct format of CAP files and
the enforcement of the typing rules associated to bytecodes. If the
component is placed outside the card, in a secure environment,
then it is called an off-card verifier. If the component is part of the

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 82/87

Term Definition

embedded software of the card it is called an on-card verifier.

CAD

Card Acceptance Device or card reader. The device where the card
is inserted, and which is used to communicate with the card.
Unless explicitly said otherwise, in this document, CAD covers
PCD.

CAP file

A file in the Converted applet format. A CAP file contains a binary
representation of a package of classes that can be installed on a
device and used to execute the package’s classes on a Java Card
virtual machine. A CAP file can contain a user library, or the code
of one or more applets.

Class

In object-oriented programming languages, a class is a prototype
for an object. A class may also be considered as a set of objects
that share a common structure and behavior. Each class declares a
collection of fields and methods associated to its instances. The
contents of the fields determine the internal state of a class
instance, and the methods the operations that can be applied to it.
Classes are ordered within a class hierarchy. A class declared as a
specialization (a subclass) of another class (its super class) inherits
all the fields and methods of the latter.

Java platform classes should not be confused with the classes of
the functional requirements (FIA) defined in the CC.

Context

A context is an object-space partition associated to a package.
Applets within the same Java technology-based package belong to
the same context. The firewall is the boundary between contexts
(see “Current context”).

Current context

The Java Card RE keeps track of the current Java Card System
context (also called “the active context”). When a virtual method is
invoked on an object, and a context switch is required and
permitted, the current context is changed to correspond to the
context of the applet that owns the object. When that method
returns, the previous context is restored. Invocations of static
methods have no effect on the current context. The current
context and sharing status of an object together determine if
access to an object is permissible.

Currently selected
applet

The applet has been selected for execution in the current session.
The Java Card RE keeps track of the currently selected Java Card
applet. Upon receiving a SELECT command from the CAD or PCD
with this applet’s AID, the Java Card RE makes this applet the
currently selected applet over the I/O interface that received the
command. The Java Card RE sends all further APDU commands
received over each interface to the currently selected applet on
this interface ([JCRE22], Glossary).

Default applet The applet that is selected after a card reset or upon completion of

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 83/87

Term Definition

the PICC activation sequence on the contactless interface
([JCRE22], §4.1)

DPA

Differential Power Analysis is a form of side channel attack in
which an attacker studies the power consumption of a
cryptographic hardware device such as a smart card.

Embedded Software Pre-issuance loaded software.

Firewall

The mechanism in the Java Card technology for ensuring applet
isolation and object sharing. The firewall prevents an applet in one
context from unauthorized access to objects owned by the Java
Card RE or by an applet in another context.

Installer

The installer is the on-card application responsible for the
installation of applets on the card. It may perform (or delegate)
mandatory security checks according to the card issuer policy (for
bytecode-verification, for instance), loads and link packages (CAP
file(s)) on the card to a suitable form for the Java Card VM to
execute the code they contain. It is a subsystem of what is usually
called “card manager”; as such, it can be seen as the portion of
the card manager that belongs to the TOE.

The installer has an AID that uniquely identifies him, and may be
implemented as a Java Card applet. However, it is granted specific
privileges on an implementation-specific manner ([JCRE22],§10).

Interface

A special kind of Java programming language class, which declares
methods, but provides no implementation for them. A class may
be declared as being the implementation of an interface, and in
this case must contain an implementation for each of the methods
declared by the interface (See also shareable interface).

Java Card RE

The runtime environment under which Java programs in a smart
card are executed. It is in charge of all the management features
such as applet lifetime, applet isolation, object sharing, applet
loading, applet initializing, transient objects, the transaction
mechanism and so on.

Java Card RE Entry
Point

An object owned by the Java Card RE context but accessible by
any application. These methods are the gateways through which
applets request privileged Java Card RE services: the instance
methods associated to those objects may be invoked from any
context, and when that occurs, a context switch to the Java Card
RE context is performed.

There are two categories of Java Card RE Entry Point Objects:
Temporary ones and Permanent ones. As part of the firewall
functionality, the Java Card RE detects and restricts attempts to
store references to these objects.

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 84/87

Term Definition

Java Card RMI

Java Card Remote Method Invocation is the Java Card System
version 2.2 and 3 Classic Edition mechanism enabling a client
application running on the CAD platform to invoke a method on a
remote object on the card. Notice that in Java Card System,
version 2.1.1, the only method that may be invoked from the CAD
is the process method of the applet class.

Java Card System
Java Card System includes the Java Card RE, the Java Card VM,
the Java Card API and the installer.

Java Card VM

The embedded interpreter of bytecodes. The Java Card VM is the
component that enforces separation between applications
(firewall) and enables secure data sharing.

Logical channel

A logical link to an application on the card. A new feature of the
Java Card System, version 2.2 and 3 Classic Edition, that enables
the opening of simultaneous sessions with the card, one per
logical channel. Commands issued to a specific logical channel are
forwarded to the active applet on that logical channel. Java Card
platform, version 2.2.2 and 3 Classic Edition, enables opening up
to twenty logical channels over each I/O interface (contacted or
contactless).

NVRAM
Non-Volatile Random Access Memory, a type of memory that
retains its contents when power is turned off.

Object deletion

The Java Card System version 2.2 and 3 Classic Edition
mechanism ensures that any unreferenced persistent (transient)
object owned by the current context is deleted. The associated
memory space is recovered for reuse prior to the next card reset.

Package

A package is a namespace within the Java programming language
that may contain classes and interfaces. A package defines either
a user library, or one or more applet definitions. A package is
divided in two sets of files: export files (which exclusively contain
the public interface information for an entire package of classes,
for external linking purposes; export files are not used directly in a
Java Card virtual machine) and CAP files.

PCD
Proximity Coupling Device. The PCD is a contactless card reader
device.

PICC Proximity Card. The PICC is a card with contactless capabilities.

RAM
Random Access Memory, is a type of computer memory that can
be accessed randomly

SCP
Smart Card Platform.It is comprised of the integrated circuit, the
operating system and the dedicated software of the smart card.

Shareable interface An interface declaring a collection of methods that an applet

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 85/87

Term Definition

accepts to share with other applets. These interface methods can
be invoked from an applet in a context different from the context
of the object implementing the methods, thus “traversing” the
firewall.

SIO An object of a class implementing a shareable interface.

Subject

An active entity within the TOE that causes information to flow
among objects or change the system’s status. It usually acts on
the behalf of a user. Objects can be active and thus are also
subjects of the TOE.

SWP

The Single Wire Protocol is a specification for a single-wire
connection between the SIM card and a Near Field Communication
(NFC) chip in a mobile handset

Transient object

An object whose contents are not preserved across CAD sessions.
The contents of these objects are cleared at the end of the current
CAD session or when a card reset is performed. Writes to the
fields of a transient object are not affected by transactions.

User

Any application interpretable by the Java Card RE. That also
covers the packages. The associated subject(s), if applicable, is
(are) an object(s) belonging to the javacard.framework.applet
class.

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 86/87

Index
A

A.NO-DELETION 38
A.NO-INSTALL 38

D

D.API_DATA 35
D.APP_C_DATA 34
D.APP_CODE 34
D.APP_I_DATA 34
D.APP_KEYs 34
D.CRYPTO 35
D.JCS_CODE 35
D.JCS_DATA 35
D.PIN 35
D.SEC_DATA 35

F

FAU_ARP.1 65
FCS_CKM.1 61
FCS_CKM.2 61
FCS_CKM.3 62
FCS_CKM.4 62
FCS_COP.1 62
FDP_ACC.2/FIREWALL 54
FDP_ACF.1/FIREWALL 54
FDP_IFC.1/JCVM 57
FDP_IFF.1/JCVM 57
FDP_RIP.1/ABORT 63
FDP_RIP.1/APDU 63
FDP_RIP.1/bArray 63
FDP_RIP.1/KEYS 64
FDP_RIP.1/OBJECTS 58
FDP_RIP.1/TRANSIENT 64
FDP_ROL.1/FIREWALL 64
FDP_SDI.2 66
FIA_ATD.1/AID 68
FIA_UID.2/AID 68
FIA_USB.1/AID 69
FMT_MSA.1/JCRE 58
FMT_MSA.1/JCVM 59
FMT_MSA.2/FIREWALL_JCVM 59
FMT_MSA.3/FIREWALL 60
FMT_MSA.3/JCVM 60
FMT_MTD.1/JCRE 69

FMT_MTD.3/JCRE 69
FMT_SMF.1 60
FMT_SMR.1 61
FPR_UNO.1 67
FPT_FLS.1 67
FPT_TDC.1 67

O

O.ALARM 40
O.CIPHER 40
O.FIREWALL 39
O.GLOBAL_ARRAYS_CONFID 39
O.GLOBAL_ARRAYS_INTEG 39
O.KEY-MNGT 40
O.NATIVE 39
O.OPERATE 39
O.PIN-MNGT 40
O.REALLOCATION 40
O.RESOURCES 39
O.SID 39
O.TRANSACTION 40
OE.CARD-MANAGEMENT 41
OE.NO-DELETION 41
OE.NO-INSTALL 41
OE.SCP.IC 41
OE.SCP.RECOVERY 41
OE.SCP.SUPPORT 41
OE.VERIFICATION 42

T

T.CONFID-APPLI-DATA 35
T.CONFID-JCS-CODE 36
T.CONFID-JCS-DATA 36
T.EXE-CODE.1 37
T.EXE-CODE.2 37
T.INTEG-APPLI-CODE 36
T.INTEG-APPLI-DATA 36
T.INTEG-JCS-CODE 36
T.INTEG-JCS-DATA 36
T.NATIVE 37
T.PHYSICAL 37
T.RESOURCES 37
T.SID.1 36
T.SID.2 37

This document has been generated with Trusted Labs Security Editor Tool (TL SET) version
2.3.6 for CC v3.

Java Card System – Closed Configuration Protection Profile August 25th, 2010

Version 2.6 Page 87/87

End of Document

